推进技术 ›› 2021, Vol. 42 ›› Issue (1): 10-38.DOI: 10.13675/j.cnki.tjjs.200329
乔渭阳1,王良锋2,段文华1,赵磊3
出版日期:
2021-01-15
发布日期:
2021-01-15
基金资助:
Online:
2021-01-15
Published:
2021-01-15
摘要: 根据对飞机噪声控制技术历史发展演化过程的总结分析,研究了民用航空发动机气动与声学一体化设计的目标、方法、流程、理论模型和发展趋势等。基于对航空发动机气动设计过程的分析,给出了航空发动机气动与声学一体化设计的流程和方法。分别从“发动机总体热力循环设计”“发动机部件通流设计”“发动机部件三维详细设计”等三个流程,介绍了航空发动机声学设计理论和技术国内外的发展情况,详细论述了发动机气动声学设计的理论、模型和方法,分析了目前航空发动机声学设计理论的主要问题及未来的研究重点,并以具体发动机设计实例分析了不同设计阶段航空发动机的气动与声学一体化设计方法思想。
乔渭阳,王良锋,段文华,赵磊. 航空发动机气动声学设计的理论、模型和方法[J]. 推进技术, 2021, 42(1): 10-38.
QIAO Wei-yang1, WANG Liang-feng2, DUAN Wen-hua1, ZHAO Lei3. Theory, Model and Method of Aero-Engine Aeroacoustic Design[J]. Journal of Propulsion Technology, 2021, 42(1): 10-38.
[1] Huff D L. NASA Glenn’s Contributions to Aircraft Engine Noise Research[R]. NASA/TP-2013-217818. [2] Doychak Joseph. Jet Engine Noise Reduction, Department of NAVY Jet Noise Reduction (JNR) Project[R]. Washington: Naval Research Advisory Committee, 2009. [3] Bjorn V S, Albery C B, Shilling R, et al. U.S. Navy Flight Deck Hearing Protection Use Trends: Survey Results[R]. USA: Naval Air Warfare Center Aircraft Div Patuxent River Md, 2006. [4] McKinley R L, Bjorn V S, Hall J A. Improved Hearing Protection for Aviation Personnel[R]. USA: Air Force Research Lab Wright-Patterson Afb Oh, 2005. [5] International Civil Aviation Organization. Annex 16: Environmental Protection Volume I: Aircraft Noise, 5th ed[M]. Montreal: International Civil Aviation Organization, 2008. [6] He Qinxian. Development of an Income-Based Hedonic Monetization Model for the Assessment of Aviation-Related Noise Impacts[D]. Massachusetts: Massachusetts Institute of Technology, 2010. [7] Butcher Louise. Aviation: Noise Pollution[R]. London: House of Common Library, 2014. [8] Lord W K. Aircraft Noise Source Reduction Technology[C]. CA: Airport Noise Symposium Palm Spring, 2004. [9] Envia E. Emerging Community Noise Reduction Approaches[C]. Honolulu: 3rd AIAA Atmospheric Space Environments Conference, 2011. [10] Ihme M. Combustion and Engine-Core Noise[J]. Annual Review of Fluid Mechanics, 2017, 49(1): 277-310. [11] Neise Wolfgang. Engines as Pacemakers for Reduction of Noise and Emission[R]. Berlin: Deutsches Zentrum für Luft-Und Raumfahrt, 2004. [12] Bradley Andrew. An Aero-Engine Vision of 2020[R]. UK: Rolls-Royce plc, 2004. [13] Elliott D. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center[R]. NASA GRC-E-DAA-TN27736, 2015. [14] Peake N, Parry A B. Modern Challenges Facing Turbomachinery Aeroacoustics[J]. Annual Review of Fluid Mechanics, 2012, 44(1): 227-248. [15] 乔渭阳, 王良锋. 航空发动机气动声学(第二版)[M]. 西安: 西北工业大学出版社, 2016. [16] Lighthill M J. On Sound Generated Aerodynamically, I: General Theory[J]. Proceedings of the Royal Society of London, 1952, (211A): 564-587. [17] Lighthill M J. On Sound Generated Aerodynamically, II: Turbulence as a Source of Sound[J]. Proceedings of the Royal Society of London, 1954, (222A): 1-32. [18] Envia Edmane. Fan Noise Reduction: An Overview[J]. Aeroacoustics, 2002, 1(1): 43-64. [19] Neise Wolfgang, Michel Uif. Turbomachinery Aerodynamics Noise[R]. Berlin: Deutsches Inst. Fuer Luft-Und Raumfahrt, 1994. [20] Nesbitt E. Towards a Quieter Low Pressure Turbine: Design Characteristics and Prediction Needs[J]. International Journal of Aeroacoustics, 2011, 10(1): 1-16 [21] Traub Paul, Grundel Hans, Gautier Sebastien. Numerical Investigation for Optimizing the Aero-Acoustical Design of Modern LP-Turbines[C]. Vienna: The Thirteenth International Congress on Sound and Vibration, 2006. [22] Stone J R, Berton J J, Krejsa E A, et al. Initial Development and Calibration of a Design Guide for Jet Noise Reduction[R]. AIAA 2004-3315. [23] Schnell R, Michel U. Turbomachinery Noise Source CFD Models for Low Noise Aircraft Designs[R]. Berlin: Deutsches Zentrum für Luft-Und Raumfahrt, 2004. [24] Mattingly J D, Heiser W H, Pratt D T. Aircraft Engine Design[R]. Reston: American Institute of Aeronautics and Astronautics, 2002. [25] 航空发动机设计手册总编委员会. 航空发动机设计手册(第5, 8, 9, 10册)[M]. 北京: 航空工业出版社, 2001. [26] Zorumski W E. Aircraft Noise Prediction Program[R]. NASA TM-83199, 1986. [27] Kontos K B, Janardan B A, Gliebe P R. Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems Volume 1: ANOPP Evaluation and Fan Noise Model Improvement[R]. NASA CR-195480, 1996. [28] Hough J W, Weir D S. Aircraft Noise Prediction Program (ANOPP) Fan Noise Prediction for Small Engine[R]. NASA CR-198300, 1996. [29] Rawls J W, Jr. Yeager J C. High Speed Research Noise Prediction Code (HSRNOISE) User’s and Theoretical Manual[R]. NASA CR-2004-213014. [30] Dunn D G, Peart N A. Aircraft Noise Source and Contour Estimation[R]. NASA CR-114649, 1973. [31] Heidmann M F, Feiler C E. Noise Comparisons from Full-Scale Fan Tests at NASA Lewis Research Center[R]. NASA CR-73-1017, 1973. [32] Heidmann M F. Interim Prediction Method for Fan and Compressor Source Noise[R]. NASA TM-X-71763, 1975. [33] Smith M J T, Bushell K W. Turbine Noise-Its Signification in the Civil Aircraft Noise Problem[R]. USA: American Society of Mechanical Engineers, 1969. [34] Krejsa E A, Valerino M F. Interim Prediction for Turbine Noise[R]. NASA TM-X-73566, 1976. [35] Matta R K, Sandusky G T, Doyle V L. GE Core Engine Noise Investigation-Low Emission Engine[R]. AD A048590, 1977. [36] Huff R G, Clark B J, Dorsch R G. Interim Prediction Method for Low Frequency Core Engine Noise[R]. NASA TM-X-71627, 1974. [37] Emmerling J J, Kazin S B, Matta R K. Core Engine Noise Control Program, Vol.III: Prediction Method[R]. AD A030376, 1976. [38] Mathews D C, Rekos N F [39] Ho P Y, Doyle V L. Combustion Noise Prediction Update[R]. AIAA 79-0588. [40] Stone J R, Krejsa E A, Clark B J. Progress in Core/Combustion Noise Prediction[R]. AIAA 2005-1199. [41] Bushell K W. Gas Turbine Jet Noise Exhaust Prediction[R]. USA: Society of Automotive Engineers, 1973. [42] Stone J R. Interim Prediction Method for Jet Noise[R]. NASA TM-X-71618, 1974. [43] Stone J R, Montegani F J. An Improved Prediction Method for the Noise Generated in Flight by Circular Jets[R]. NASA TM-81470, 1980. [44] Harper-Bourne M, Fisher M J. The Noise from Shock Waves in Supersonic Jets[C]. Brussels: AGARD Conference on Noise Mechanisms, 1974. [45] Tanna H K, Dean P D, Burrin R H. The Generation and Radiation of Supersonic Jet Noise-Shock-Associated Noise Data[R]. AFAPL-TR-76-65, 1976. [46] Pao S P. A Correlation of Mixing Noise from Coannular Jets with Inverted Flow Profiles[R]. NASA TP-1301, 1979. [47] Russell J W. A Method for Predicting the Noise Levels of Coannular Jets with Inverted Flow Profiles[R]. NASA CR-3176, 1979. [48] Nesbitt E H, Ganz U W, Diamond J A, et al. An Empirical Prediction of Inlet Radiated Broadband Noise from Full Scale Engines[R]. AIAA 98-0470. [49] Rodrigo C C, Guimar?es, Greco Paulo, et al. Development of Fan Broadband Noise Semi-Empirical Prediction Method Adjustable from Operation Point[R]. AIAA 2012-2268. [50] Krejsa E A, Stone J R. Enhanced Fan Noise Modeling for Turbofan Engines[R]. NASA CR-218421, 2014. [51] Morin B, Atassi O. An Empirical Model for Turbine Noise Prediction[R]. Vancouver: AARC Turbine Noise Workshop, 2008. [52] Hetherington R. Compressor Noise Generated by Fluctuating Lift Resulting from Rotor-Stator Interaction[J]. AIAA Journal, 1963, 1(2): 473-474. [53] Wright S E. The Acoustic Spectrum of Axial Flow Machines[J]. Journal of Sound and Vibration, 1976, 45: 165-223. [54] Lowson M V. Theoretical Studies of Compressor Noise[R]. NASA CR-1278, 1969. [55] Lowson M V. Theoretical Studies of Compressor Noise[J]. The Journal of Acoustical Society of America, 1970, 47: 371-385. [56] Hanson D B. Unified Analysis of Fan Stator Noise[J]. The Journal of Acoustical Society of America, 1973, 54: 1571-1591. [57] Tyler J M, Sofrin T G. Axial Flow Compressor Noise Studies[J]. SAE Transactions, 1962, 52: 309-332. [58] Goldstein M E. Aeroacoustics[M]. New York: McGRAW-HILL, 1976. [59] Kaji S, Okazaki T. Generation of Sound by Rotor-Stator Interaction (Sound Generation by Rotor-Stator Interaction in Subsonic Axial Flow Compressors, Using Acceleration Potential and Wake Technique)[J]. Journal of Sound and Vibration, 1970, 13: 281-307. [60] Whitehead D S. Vibration and sound Generation in a Cascade of Flat Plates in Subsonic Flow (Blade Vibration and Noise Generation in Turbomachines by Calculation of Subsonic Flow Through Flat Plate Cascade)[R]. London: Aeronautical Research Council, 1972. [61] Smith S N. Discrete Frequency Sound Generation in Axial Flow Turbomachines (Calculation of Unsteady, Subsonic Flow Through Infinite, Two-Dimensional Flat Plate Blade)[R]. USA: Ministry of Aviation, 1973. [62] Kaji S, Okazaki T. Propagation of Sound Waves Through a Blade Row: I. Analysis Based on the Semi-Actuator Disk Theory[J]. Journal of Sound and Vibration, 1970, 11(3): 339-353. [63] Kaji S, Okazaki T. Propagation of Sound Waves Through a Blade Row: II. Analysis Based on the Acceleration Potential Method[J]. Journal of Sound and Vibration, 1970, 11(3): 355-375. [64] Osborne C. Compressible Unsteady Interactions Between Blade Rows (Compressibility Effects on Unsteady Forces Generated by Jet Engine Blade Rows Aerodynamic Interference, Considering Potential Flow and Viscous Wake Interactions)[J]. AIAA Journal, 1973, 11: 340-346. [65] Hanson D B. Coupled 2-Dimensional Cascade Theory for Noise and Unsteady Aerodynamics of Blade Row Interaction in Turbofans, Volume1-Theory Development and Parametric Studies[R]. NASA CR-4506, 1994. [66] Namba M. Three-Dimensional Analysis of Blade Force and Sound Generation for An Annular Cascade in Distorted Flows[J]. Journal of Sound and Vibration, 1977, 50(4): 479-508. [67] Kobayashi H. Three-Dimensional Effects on Pure Tone Noise Due to Inflow Distortion[R]. AIAA 78-1120. [68] Ventres C S, Theobald M A, Mark W D. Turbofan Noise Generation[R]. NASA CR-167952, 1982. [69] Meyer H D, Envia E. Aeroacoustic Analysis of Turbofan Noise Generation[R]. NASA CR-4715, 1996. [70] Sharland I J. Sources of Noise in Axial Flow Fans[J]. Journal of Sound and Vibration, 1964, 1(3): 302-322. [71] Mugridge B D. Broadband Noise Generation by Airfoils and Axial Flow Fans[R]. AIAA 73-1081. [72] Morfey C L. Broadband Sound Radiated from Subsonic Rotors[J]. Fluid Mechanics, Acoustics, and Design of Turbomachinery, 1974, 1(1): 461-492. [73] Mani R. Noise Due to Interaction of Inlet Turbulence with Isolated Stators and Rotors[J]. Journal of Sound and Vibration, 1971, 17(2): 251-260. [74] Homicz G F, George A R. Broadband and Discrete Frequency Radiation from Subsonic Rotors[J]. Journal of Sound and Vibration, 1974, 36(2): 151-177. [75] Amiet R K. Acoustic Radiation from an Airfoil in a Turbulent Stream[J]. Journal of Sound and Vibration, 1975, 41(4): 407-420. [76] Paterson R W, Amiet R K. Acoustic Radiation and Surface Pressure Characteristics of an Airfoil Due to Incident Turbulence[R]. NASA CR-2733, 1976. [77] Atassi H M, Hamad G. Sound Generated in a Cascade by Three-Dimensional Disturbances Convected in Subsonic Flow[R]. AIAA 81-2046. [78] Gliebe P R. Fan Broadband Self Noise Prediction Model[R]. AIAA 2002-2490. [79] Glegg S A L. Airfoil Self Noise Generated in a Cascade[R]. AIAA 96-1739. [80] Glegg S A L. Broadband Noise from Ducted Prop Fans[R]. AIAA 93-4402. [81] Gouville Benoit de, Roger M, Cailleau J M. Prediction of Fan Broadband Noise[R]. AIAA 1998-2317. [82] Phillip Joseph, Anthony Parry. Rotor/Wall Boundary-Layer Interaction Broadband Noise in Turbofan Engines[R]. AIAA 2001-2244. [83] Ganz U W, Joppa P D, Patten T J, et al. Boeing 18-inch Fan Rig Broadband Noise Test[R]. NASA CR-1998-208704. [84] Nallasamy M, Envia E. Computation of Rotor Wake Turbulence Noise[J]. Journal of Sound and Vibration, 2005, 282(3-5): 649-678. [85] Koch W. On the Transmission of Sound Waves Through a Blade Row[J]. Journal of Sound and Vibration, 1971, 18(1): 111-128. [86] Glegg S A L. The Response of a Swept Blade Row to a Three-Dimensional Gust[J]. Journal of Sound and Vibration, 1999, 227 (1): 29-64. [87] Donald B. Hanson, Horan Kelly P.. Turbulence/Cascade Interaction-Spectra of Inflow, Response Cascade, And Noise[R]. AIAA 98-2319. [88] Hanson D B. Theory for Broadband Noise of Rotor and Stator Cascades with Inhomogeneous Inflow Turbulence Including Effects of Lean and Sweep[R]. NASA CR-210762, 2001. [89] Evers I, Peake N. On Sound Generation by the Interaction Between Turbulence and a Cascade of Airfoils with Non-Uniform Mean Flow[J]. Journal of Fluid Mechanics, 2002, 463: 25-52. [90] Posson H, Roger M, Moreau S. On a Uniformly Valid Analytical Rectilinear Cascade Response Function[J]. Journal of Fluid Mechanics, 2010, 663: 22-52. [91] Posson H, Moreau S, Roger M. On the Use of a Uniformly Valid Analytical Cascade Response Function for Fan Broadband Noise Predictions[J]. Journal of Sound and Vibration, 2010, 329(18): 3721-3743. [92] Posson H, Moreau S, Roger M. Broadband Noise Prediction of Fan Outlet Guide Vane Using a Cascade Response Function[J]. Journal of Sound and Vibration, 2011, 330: 6153-6183. [93] Posson H, Peake N. The Acoustic Analogy in an Annular Duct with Swirling Mean Flow[J]. Journal of Fluid Mechanics, 2013, 726: 439-475. [94] Masson V, Posson Hélène, Sanjose Marlène, et al. Fan-OGV Interaction Broadband Noise Prediction in a Rigid Annular Duct with Swirling and Sheared Mean Flow[C]. France: 22nd AIAA/CEAS Aeroacoustics Conference,2016. [95] Ju H, Mani R, Vysohlid M, et al. Investigation of Fan-Wake / Outlet-Guide-Vane Interaction Broadband Noise[J]. AIAA Journal, 2015, 53(12): 3534-3550. [96] Ju H. Effects of Vane Sweep on Fan-Wake/Outlet-Guide-Vane Interaction Broadband Noise[C]. France: 22nd AIAA/CEAS Aeroacoustics Conference, 2016. [97] Atassi H M, Ali A A, Atassi O V, et al. Scattering of Incidence Disturbances by an Annular Cascade in a Swirling Flow[J]. Journal of Fluid Mechanics, 2004, 29: 111-138. [98] Atassi H M, Vinogradov I V. A Model for Fan Broadband Interaction Noise in Nonuniform Flow[R]. AIAA 2005-2880. [99] Atassi H M, Vinogradov I V. Modelling Broadband Fan Noise and Comparison with Experiments[R]. AIAA 2007-3691. [100] Atassi H M, Logue M M. Effect of Turbulence Structure on Broadband Fan Noise[R]. AIAA 2008-2842. [101] 赵 磊. 涡轮气动-声学一体化设计理论及方法研究[D]. 西安: 西北工业大学, 2013. [102] 谭洪川, 乔渭阳, 赵 磊. 低压涡轮气动/声学一体化设计方法——总体参数优化[J]. 推进技术, 2012, 33(4): 573-578. [103] Michel U. In-duct Matching Between CFD and CAA[C]. Berlin: TurboNoise CFD Meeting, 2003. [104] Ovenden N C, Rienstra S W. Mode-Matching Streategies in Slowly Varying Engine Ducts[R]. AIAA 2003-3139. [105] Lebrun M, Favre C. Fan-OGV Unsteady Navier-Stokes Computation Using an Adapted Acoustic Mesh[R]. AIAA 2004-2995. [106] Rumsey C L, Biedron R T, Farassat F, et al. Ducted-Fan Engine Acoustic Predictions Using a Navier-Stokes Code[J]. Journal of Sound and Vibration, 1998, 213(4): 643-664. [107] Thomas R H, Gerhold C H, Farassat F, et, al. Far Field Noise of the 12-Inch Advanced Ducted Propeller Simulator[R]. AIAA 95-0722. [108] Parrett A V, Eversman W. Wave Envelop and Finite Element Approximations for Turbofan Noise Radiation in Flight[J]. AIAA Journal, 1986, 24: 753-760. [109] Roy I D, Eversman W, Meyer H D. Improved Finite Element Modeling of the Turbofan Inlet Radiation Problem[R]. NASA CR-1993-25952, 1993. [110] Tsuchiya Naoki, Nakamura Yoshiya, Yamagata Akihiro, et al. Fan Noise Prediction Using Unsteady CFD Analysis[R]. AIAA 2002-2491. [111] Polacsek C, Desbois-Lavergne F. Fan Interaction Noise Reduction Using a Wake Generator: Experiments and Computational Aeroacoustics[J]. Journal of Sound and Vibration, 2003, 265: 725-743. [112] Polacsek C, Burguburu S, Redonnet S, et al. Numerical Simulations of Fan Interaction Noise Using a Hybrid Approach[J]. AIAA Journal, 2006, 44(6): 1188-1196. [113] Grace S M, Sondak D L, Eversman W, et al. Hybrid Prediction of Fan Tonal Noise[R]. AIAA 2008-2992. [114] Weckmüeller C, Guerin S, Ashcroft G. CFD-CAA Coupling Applied to DLR UHBR-Fan: Comparison to Experimental Data[R]. AIAA 2009-3342. [115] Keisuke Tanigawa, Nobuhiko Yamasaki, Tsutomu Ooishi, et al. Improved Hybrid Prediction of Fan Noise[C]. Florida: 15th AIAA/CEAS Aeroacoustics Conference. [116] Guérin S, Holewa A. Fan Tonal Noise from Aircraft Aeroengines with Short Intake: A Study at Approach[J]. International Journal of Aeroacoustics, 2018, 17(6-8): 600-623. [117] Laban M, Kok J C, Brouwer H. CFD/CAA Analysis of UHBR Engine Tonal Noise[C]. Atlanta: 24th AIAA/CEAS Aeroacoustics Conference, 2018. [118] Garrec T L, Polacsek C, Chelius A, et al. Tone Noise Predictions of a Full-Scale UHBR Engine at Approach Condition with Inflow Distortion Effects[R]. AIAA 2019-2606. [119] Riou J, Lewy S, Heib S. Large Eddy Simuilation for Predicting Rotor-Stator Broadband Interaction Fan Noise[C]. Istanbul: 36th International Congress and Exposition on Noise Control Engineering, 2007. [120] Reboul G, Polacsek C, Lewy S, et al. Aeroacoustic Computation of Ducted-Fan Broadband Noise Using LES Data[J]. Journal of the Acoustical Society of America, 2008, 123(5). [121] Reboul G, Polacsek C, Lewy S, et al. Ducted-Fan Broadband Noise Simulations Using Unsteady or Averaged Data[C]. Shanghai: 37th International Congress and Exposition on Noise Control Engineering, 2008. [122] Laborderie J de, Moreau S, Berry A. Compressor Stage Broadband Noise Prediction Using a Large-Eddy Simulation and Comparisons with a Cascade Response Model[R]. AIAA 2013-2042. [123] Wang Meng, Moin Parviz. Computation of Trailing Edge Flow and Noise Using Large-Eddy Simulation[J]. AIAA Journal, 2000, 38: 2201-2209. [124] Manoha Eric, Troff Bruno, Sagaut Pierre. Trailing Edge Noise Prediction Using Large Eddy Simulation and Acoustic Analogy[R]. AIAA 98-1066. [125] Greschner B, Grilliat J, Jacob M C, et al. Measurements and Wall Modeled LES Simulation of Trailing Edge Noise Caused by Turbulent Boundary Layer[J]. International Journal of Aeroacoustics, 2010, (9): 329-355. [126] Lockard D P. A Comparison of Ffowcs Williams-Harkings Solvers for Airframe Noise Applications[R]. AIAA 2002-2580. [127] Wolf W R, Lele S K. Trailing Edge Noise Predictions Using Compressible LES and Acoustic Analogy[R]. AIAA 2011-2784. [128] Tucker P G. Computation of Unsteady Turbomachinery Flows: Part 2-LES and Hybrids[J]. Journal of Sound and Vibration, 2011, 47: 546-569. [129] Nallasamy M, Envia E. Computation of Rotor Wake Turbulence Noise[J]. Journal of Sound and Vibration, 2005, 282: 649-678. [130] Polacsek C, Clair V, Garrec T L, et al. Numerical Predictions of Turbulence/Cascade Interaction Noise Using Computational Aeroacoustics with a Stochastic Model[J]. AIAA Journal, 2015, 53(12): 3551-3565. [131] Guérin S, Kissnery C, Kajasaz B, et al. Noise Prediction of the ACAT1 Fan with a RANS-Informed Analytical Method: Success and Challenge[R]. AIAA 2019-2500. [132] Inoue M, Kuroumaru M. Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor[J]. Journal of Turbomachinery, 1989, 111(3): 250-256. [133] Storer J A, Cumpsty N A. Tip Leakage Flow in Axial Compressors[J]. Journal of Turbomachinery, 1991, 113: 252-259. [134] Lakshminarayana B, Zaccaria M, Marathe B. The Structure of Tip Clearance Flow in Axial Flow Compressors[J]. Journal of Turbomachinery, 1995, 117: 336-347. [135] Kameier F, Neise W. Experimental Study of Tip Clearance Losses and Noise in Axial Turbomachines and Their Reduction[J]. Journal of Turbomachinery, 1997, 119: 460-471. [136] Fukano T, Jang C M. Tip Clearance Noise of Axial Flow Fans Operating at Design and Off-Design Condition[J]. Journal of Sound and Vibration, 2004, 275: 1027-1050. [137] Hughes C E, Woodward R P, Podboy G G. Effect of Tip Clearance on Fan Noise and Aerodynamic Performance[R]. AIAA 2005-2875. [138] Corsini Alessandro, Rispoli Franco, Sheard A G. Aerodynamic Performance of Blade Tip End-Plates Designed for Low-Noise Operation in Axial Flow Fans[J]. Journal of Fluids Engineering, 2009, 131(8). [139] 王良锋, 风扇管道声模态识别的实验及数值模拟研究[D]. 西安: 西北工业大学, 2017. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:北京7208信箱26分箱
邮政编码:100074
E-mail:tjjs@sina.com
访问总数:今日访问: 版权所有 © 《推进技术》编辑部