推进技术 ›› 2020, Vol. 41 ›› Issue (9): 2038-2058.DOI: 10.13675/j.cnki.tjjs.200333
严红1,2,3,陈福振1,2
出版日期:
2020-09-15
发布日期:
2020-09-15
作者简介:
严 红,博士,教授,研究领域为航空发动机燃油雾化与燃烧。E-mail:yanhong@nwpu.edu.cn
基金资助:
Online:
2020-09-15
Published:
2020-09-15
摘要: 从实验、理论和数值模拟三个方面对航空发动机内的燃油雾化问题研究进展进行了综述。实验方面,通过雾化实验,可定性分析喷注参数及环境条件等因素对雾化效果的影响,测量技术是影响实验精度的关键;雾化理论对液膜形状及破碎特性的预测值与实验还存在一定误差,复杂气动条件下的雾化理论还较为缺乏;雾化数值模拟可以获得不同形式燃油雾化的某些典型变化过程,复杂多过程、多因素影响的雾化模拟还较难开展。总体上看,航空发动机燃油雾化机理还未能完全揭示。
严红,陈福振. 航空发动机燃油雾化特性研究进展[J]. 推进技术, 2020, 41(9): 2038-2058.
YAN Hong1,2,3, CHEN Fu-zhen1,2. Review on Fuel Atomization in Aeroengine[J]. Journal of Propulsion Technology, 2020, 41(9): 2038-2058.
[1] Davanlou A, Lee J D, Basu S, et al. Effect of Viscosity and Surface Tension on Breakup and Coalescence of Bicomponent Sprays[J]. Chemical Engineering Science, 2015, 131(28): 243-255. [2] Sivakumar D, Vankeswaram S K, Sakthikumar R, et al. An Experimental Study on Jatropha-Derived Alternative Aviation Fuel Sprays from Simplex Swirl Atomizer[J]. Fuel, 2016, 179(1): 36-44. [3] Durdina L, Jedelsky J, Jicha M. Investigation and Comparison of Spray Characteristics of Pressure-Swirl Atomizers for a Small-Sized Aircraft Turbine Engine[J]. International Journal of Heat & Mass Transfer, 2014, 78(7): 892-900. [4] Liu X, Xue R, Ruan Y, et al. Flow Characteristics of Liquid Nitrogen Through Solid-Cone Pressure Swirl Nozzles [J]. Applied Thermal Engineering, 2017, 110(5): 290-297. [5] Park K S, Heister S D. Nonlinear Modeling of Drop Size Distributions Produced by Pressure-Swirl Atomizers [J]. International Journal of Multiphase Flow, 2010, 36(1): 1-12. [6] Sakman A T, Jog M A, Jeng S M, et al. Parametric Study of Simplex Fuel Nozzle Internal Flow and Performance [J]. AIAA Journal, 2012, 38(7): 1214-1218. [7] Bayvel L, Orzechowski Z. Liquid Atomization[R]. NASA STI/Recon Technical Report A, 1993, 1993STIA9412494B, 1993. [8] Lefebvre A H. Atomization and Sprays[M]. USA: Hemisphere Pub. Corp, 1989. [9] Benjamin M A, Mansour A, Samant U G, et al. Film Thickness, Droplet Size Measurements and Correlations for Large Pressure-Swirl Atomizers [R]. ASME 98-GT-537. [10] Halder M R, Dash S K, Som S K. Initiation of Air Core in a Simplex Nozzle and the Effects of Operating and Geometrical Parameters on Its Shape and Size[J]. Experimental Thermal & Fluid Science, 2002, 26(8): 871-878. [11] Halder M R, Dash S K, Som S K. Influences of Nozzle Flow and Nozzle Geometry on the Shape and Size of an Air Core in a Hollow Cone Swirl Nozzle [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2003, 217(2): 207-217. [12] Kim S, Khil T, Kim D, et al. Effect of Geometric Parameters on the Liquid Film Thickness and Air Core Formation in a Swirl Injector[J]. Measurement Science & Technology, 2009, 20(1). [13] Moon S, Abo-Serie E, Bae C. Liquid Film Thickness Inside the High Pressure Swirl Injectors: Real Scale Measurement and Evaluation of Analytical Equations [J]. Experimental Thermal & Fluid Science, 2010, 34(2): 113-121. [14] Moon S, Abo-Serie E, Bae C. The Spray Characteristics of a Pressure-Swirl Injector with Various Exit Plane Tilts [J]. International Journal of Multiphase Flow, 2008, 34(7): 615-627. [15] Dikshit S, Channiwala S, Kulshreshtha D, et al. Experimental Investigations of Performance Parameters of Pressure Swirl Atomizer for Kerosene Type Fuel [R]. ASME GT 2009-59084. [16] Saha A, Lee J D, Basu S, et al. Breakup and Coalescence Characteristics of a Hollow Cone Swirling Spray [J]. Physics of Fluids, 2012, 24(12): 621-633. [17] Cui J, Lai H, Li J, et al. Visualization of Internal Flow and the Effect of Orifice Geometry on the Characteristics of Spray and Flow Field in Pressure-Swirl Atomizers [J]. Applied Thermal Engineering, 2017, 127(25): 812-822. [18] Rashad M, Huang Y, Zheng Z. Effect of Geometric Parameters on Spray Characteristics of Pressure Swirl Atomizers [J]. International Journal of Hydrogen Energy, 2016, 41(35): 15790-15799. [19] 刘观伟, 王顺森, 毛靖儒, 等. 小流量离心式喷嘴雾化特性的实验研究[J]. 燃气轮机技术, 2007, (1): 30-34. [20] Chu C C, Chou S F, Lin H I, et al. An Experimental Investigation of Swirl Atomizer Sprays [J]. Heat & Mass Transfer, 2008, 45(1): 11-22. [21] Gong J S, Fu W B. The Experimental Study on the Flow Characteristics for a Swirling Gas-Liquid Spray Atomizer [J]. Applied Thermal Engineering, 2007, 27(17): 2886-2892. [22] Lee E J, Sang Y O, Kim H Y, et al. Measuring Air Core Characteristics of a Pressure-Swirl Atomizer via a Transparent Acrylic Nozzle at Various Reynolds Numbers[J]. Experimental Thermal & Fluid Science, 2010, 34(8): 1475-1483. [23] Park B S, Kim H Y, Yoon S S. Transitional Instability of a Pressure-Swirl Atomizer Due to Air-Core Eruption at Low Temperature[J]. Atomization & Sprays, 2006, 17(6): 551-568. [24] Yao S, Fang T. Spray Characteristics of a Swirl Atomiser in Trigger Sprayers Using Water-Ethanol Mixtures[J]. Canadian Journal of Chemical Engineering, 2013, 91(7): 1312-1324. [25] Moon S, Bae C, Abo-Serie E F, et al. Internal and Near-Nozzle Flow of a Pressure-Swirl Atomizer under Varied Fuel Temperature [J]. Atomization & Sprays, 2007, 17(17): 529-550. [26] Bolszo C D, Narvaez A A, Dunn-Rankin D, et al. Pressure Swirl Atomization of Water-in-Oil Emulsions [J]. Atomization & Sprays, 2010, 22(12): 1077-1099. [27] Fan Y, Hashimoto N, Nishida H, et al. Spray Characterization of an Air-Assist Pressure-Swirl Atomizer Injecting High-Viscosity Jatropha Oils[J]. Fuel, 2014, 121(2): 271-283. [28] Hashimoto N, Nishida H, Ozawa Y. Fundamental Combustion Characteristics of Jatropha Oil as Alternative Fuel for Gas Turbines[J]. Fuel, 2014, 126(15): 194-201. [29] Glathe A, Wozniak G, Richter T. The Influence of Eccentricity on the Performance of a Coaxial Prefilming Air-Assist Atomizer[J]. Atomization & Sprays, 2001, 11(1): 21-33. [30] Jasuja A K. Airblast Atomization of Alternative Liquid Petroleum Fuels under High Pressure Conditions[J]. Journal of Engineering for Gas Turbines & Power, 1981, 103(3): 514-518. [31] B?row E, Gepperth S, Koch R, et al. Effect of the Precessing Vortex Core on Primary Atomization [J]. Zeitschrift Für Physikalische Chemie, 2015, 229(6): 909-929. [32] Gepperth S, Guildenbecher D, Koch R, et al. Pre-Filming Primary Atomization: Experiments and Modeling [C]. Breno: Europe Conference on Liquid Atomization and Spray Systems, 2010. [33] Gepperth S, Müller A, Koch R, et al. Ligament and Droplet Characteristics in Prefilming Airblast Atomization [C]. Heidelberg: Triennial International Conference on Liquid Atomization and Spray Systems, 2012. [34] Bhayaraju U, Hassa C. Planar Liquid Sheet Breakup of Prefilming and Nonprefilming Atomizers at Elevated Pressure [J]. Atomization and Sprays, 2009, 19(2): 1147-1169. [35] Liu C, Liu F, Yang J, et al. Investigations of the Effects of Spray Characteristics on the Flame Pattern and Combustion Stability of a Swirl-Cup Combustor[J]. Fuel, 2015, 139(1): 529-536. [36] Warncke K, Gepperth S, Sauer B, et al. Experimental and Numerical Investigation of the Primary Breakup of an Airblasted Liquid Sheet [J]. International Journal of Multiphase Flow, 2017, 91(5): 208-224. [37] Sattelmayer T, Wittig S. Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra [J]. ASME Transactions Journal of Engineering Gas Turbines & Power, 1986, 108(3): 465-472. [38] Jasuja A K. Behaviour of Aero-Engine Airblast Sprays in Practical Environments [C]. Kyoto: 10th International Conference on Liquid Atomization and Spray Systems, [39] Zhi He W, Hua Jiang Z, Quan L S. Analysis of Energy Efficiency of Air in Atomizing Pseudoplastic Liquid Using a Specially Designed Prefilming Airblast Atomizer [J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 3144-3149. [40] Brandt M , Gugel K O , Hassa C . Experimental Investigation of the Liquid Fuel Evaporation in a Premix Duct for Lean Premixed and Prevaporized Combustion [J]. Journal of Engineering for Gas Turbines & Power, 1997, 119: 815-821. [41] Shanmugadas K P, Chakravarthy S R. A Canonical Geometry to Study Wall Filming and Atomization in Pre-Filming Coaxial Swirl Injectors[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2467-2474. [42] Hadef R, Lenze B. Effects of Co- and Counter-Swirl on the Droplet Characteristics in a Spray Flame[J]. Chemical Engineering & Processing Process Intensification, 2008, 47(12): 2209-2217. [43] Aigner M, Wittig S. Swirl and Counterswirl Effects in Prefilming Airblast Atomizers[J]. ASME Transactions Journal of Engineering Gas Turbines & Power, 1988, 110(1): 105-110. [44] Merkle K, Haessler H, Büchner H, et al. Effect of Co- and Counter-Swirl on the Isothermal Flow- and Mixture-Field of an Airblast Atomizer Nozzle [J]. International Journal of Heat & Fluid Flow, 2003, 24(4): 529-537. [45] Chin J S, Rizk N K, Razdan M K. Effect of Inner and Outer Airflow Characteristics on High Liquid Pressure Prefilming Airblast Atomization [J]. Journal of Propulsion & Power, 2015, 16(2): 297-301. [46] Foust M , Thomsen D , Stickles R , et al. Development of the GE Aviation Low Emissions TAPS Combustor for Next Generation Aircraft Engines[C]. Nashville: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, 2012. [47] Matsuyama R , Kobayashi M , Ogata H , et al. Development of a Lean Staged Combustor for Small Aero-Engines [C]. Copenhagen: ASME Turbo Expo: Turbine Technical Conference & Exposition, 2012. [48] Orain M , Grisch Frédéric , Jourdanneau E , et al. Simultaneous Measurements of Equivalence Ratio and Flame Structure in Multipoint Injectors Using PLIF[J]. Comptes Rendus De Lacademie Des Sciences: Serie II B/Mecanique, 2009, 337(6-7): 373-384. [49] 张 韬, 黄 勇, 何 悟, 等. 多级旋流耦合流场值班级雾化性能[J]. 燃烧科学与技术, 2017, 23(5):443-450. [50] Stouffer S, Ballal D, Zelina J. Development and Combustion Performance of High Pressure WSR and TAPS Combustor[C]. Reno: AIAA Aerospace Science Meeting and Exhibit, 2005. [51] Dhanuka S K, Temme J E, Driscoll J F, et al. Vortex-Shedding and Mixing Layer Effects on Periodic Flashback in a Lean Premixed Prevaporized Gas Turbine Combustor[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2901-2908. [52] 徐 榕, 赵坚行, 刘 勇. TAPS/MLDI低污染燃烧室油雾特性[J]. 航空动力学报, 2012, 27(11): 353-361. [53] 颜应文, 李红红, 赵坚行. 双环预混旋流低污染燃烧室数值研究[J]. 航空动力学报, 2009, 24(9): 1923-1929. [54] Giffen B E, Muraszew A. The Atomisation of Liquid Fuels[M]. New York: John Wiley & Sons, 1953. [55] Taylor G I. The Boundary Layer in the Converging Nozzle of a Swirl Atomizer[J]. Quarterly Journal of Mechanics & Applied Mathematics, 1950, 3(2): 129-139. [56] Binnie A M, Harris D P. The Application of Boundary Layer Theory to Swirling Liquid Flow Through a Nozzle [J]. Quarterly Journal of Mechanics & Applied Mathematics, 1950, 3(1): 89-106. [57] Som S K, Mukherjee S G. Theoretical and Experimental Investigations on the Formation of Air Core in a Swirl Spray Atomizing Nozzle [J]. Applied Scientific Research, 1980, 36(3): 173-196. [58] Senecal P K, Schmidt D P, Nouar I, et al. Modeling High-Speed Viscous Liquid Sheet Atomization [J]. International Journal of Multiphase Flow, 1999, 25(6-7): 1073-1097. [59] Schmidt D P, Nouar I, Senecal P K, et al. Pressure-Swirl Atomization in the Near Field[R]: SAE Technical Paper 01-0496, 1999. [60] Rangel R H, Sirignano W A. Nonlinear Growth of Kelvin-Helmholtz Instability: Effect of Surface Tension and Density Ratio[J]. Physics of Fluids, 1998, 31(7): 1845-1855. [61] Clark C J, Dombrowski N. Aerodynamic Instability and Disintegration of Inviscid Liquid Sheets [J]. Proceedings of the Royal Society of London, 1972, 329: 467-478. [62] Lin S P, Reitz R D. Drop and Spray Formation from a Liquid Jet[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 85-105. [63] Sirignano W A, Mehring C. Review of Theory of Distortion and Disintegration of Liquid Streams[J]. Progress in Energy & Combustion Science, 2000, 26(4): 609-655. [64] Lasheras J C, Villermaux E, Hopfinger E J. Break-Up and Atomization of a Round Water Jet by a High-Speed Annular Air Jet[J]. Journal of Fluid Mechanics, 1998, 357(2): 351-379. [65] Dumouchel C. On the Experimental Investigation on Primary Atomization of Liquid Streams [J]. Experiments in Fluids, 2008, 45(3): 371-422. [66] Ayres D, Caldas M, Semi?o V, et al. Prediction of the Droplet Size and Velocity Joint Distribution for Sprays [J]. Fuel, 2001, 80(3): 383-394. [67] Belhadef A, Vallet A, Amielh M, et al. Pressure-Swirl Atomization: Modeling and Experimental Approaches [J]. International Journal of Multiphase Flow, 2013, 39: 13-20. [68] Mehring C, Sirignano W A. Axisymmetric Capillary Waves on Thin Annular Liquid Sheets, I: Temporal Stability[J]. Physics of Fluids, 2000, 12(6): 1417-1439. [69] Squire H B. Investigation of the Instability of a Moving Liquid Film[J]. British Journal of Applied Physics, 1953, 4(6): 167. [70] Xiao W, Huang Y. Improved Semiempirical Correlation to Predict Sauter Mean Diameter for Pressure-Swirl Atomizers[J]. Journal of Propulsion & Power, 2014, 30(6): 1628-1635. [71] 肖 为, 罗莲军, 马 柱, 等. 双油路离心喷嘴雾化特性的半经验预测方法[J]. 航空动力学报, 2018, 33(2): 463-469. [72] Lefebvre A H, Wang X F. Mean Drop Sizes from Pressure-Swirl Nozzles [J]. Journal of Propulsion and Power, 2012, 3(1): 11-18. [73] Rho B J, Kang S J, Oh J H, et al. Swirl Effect on the Spray Characteristics of a Twin-Fluid Jet [J]. ASME International Journal, 1998, 12(5): 899-906. [74] Park, Su H, Lee, et al. Influence of the Mixture of Gasoline and Diesel Fuels on Droplet Atomization, Combustion, and Exhaust Emission Characteristics in a Compression Ignition Engine[J]. Fuel Processing Technology, 2013, 106(2): 392-401. [75] Elkobt M. Fuel Atomization for Spray Modeling [J]. Progress in Energy & Combustion Science, 1982, 8(1): 61-91. [76] Elshanawany M S, Lefebvre A H. Airblast Atomization: The Effect of Linear Scale on Mean Drop Size [C]. New Orleans: ASME 1980 International Gas Turbine Conference and Products Show, 1980. [77] Yamane Y, Yokota H, Kamimoto T. Study of Atomization and Air-Entrainment Characteristics of Unsteady Dense Sprays[J]. JSME International Journal, 1994, 37(3): 604-610. [78] Lefebvre A H. Airblast Atomization [J]. Progress in Energy & Combustion Science, 1980, 6(3): 233-261. [79] Buckner H N, Sojka P E. Effervescent Atomization of High-Viscosity Fluids, Part I: Newtonian Liquids[J]. Atomization & Sprays, 1991, 1(3): 239-252. [80] Lund M T, Sojka P E, Lefebvre A H, et al. Effervescent Atomization at Low Mass Flow Rates, Part I: The Influence of Surface Tension[J]. Atomization & Sprays, 1993, 3(1): 77-89. [81] Santangelo P J, Sojka P E. A Holographic Investigation of the Near-Nozzle Structure of an Effervescent Atomizer-Produced Spray[J]. Atomization & Sprays, 1995, 5(2): 137-155. [82] Couto H S, Carvalho J A, Bastosnetto D. Theoretical Formulation for Sauter Mean Diameter of Pressure-Swirl Atomizers [J]. Journal of Propulsion and Power, 2011, 13(5): 691-696. [83] Inamura T, M S, Tsushima M, et al. Spray Characteristics of Prefilming Type of Airblast Atomizer[C]. Heidelberg: 12th Triennial international Annual Conference on Liquid Atomization and Spray Systems, 2012. [84] Eckel G, Rachner M, Clercq P L, et al. Semi-Empirical Primary Atomization Models for Transient Lagrangian Spray Simulation [C]. Jeju: International Conference on Multiphase Flow, 2013. [85] Chaussonnet G, Riber E, Vermorel O, et al. Large Eddy Simulation of a Prefilming Airblast Atomizer[C]. Chania: ILASS-Europe, [86] Chaussonnet G, Vermorel O, Riber E, et al. A New Phenomenological Model to Predict Drop Size Distribution in Large-Eddy Simulations of Airblast Atomizers[J]. International Journal of Multiphase Flow, 2016, 80: 29-42. [87] Chaussonnet G, Müller A, Holz S, et al. Time-Response of Recent Prefilming Airblast Atomization Models in an Oscillating Air Flow Field[C]. Charlotte: ASME Turbo Expo, 2017. [88] Sakman A, Jha S, Jog M, et al. A Numerical Parametric Study of Simplex Fuel Nozzle Internal Flow and Performance [R]. AIAA 98-3906. [89] Xue J, Jog M A, Jeng S M, et al. Effect of Geometric Parameters on Simplex Atomizer Performance[J]. AIAA Journal, 2011, 42(12): 2408-2415. [90] Datta A, Som S K. Numerical Prediction of Air Core Diameter, Coefficient of Discharge and Spray Cone Angle of a Swirl Spray Pressure Nozzle[J]. International Journal of Heat & Fluid Flow, 2000, 21(4): 412-419. [91] Madsen J, Solberg T, Hjertager B H. Numerical Simulation of Internal Flow in a Large-Scale Pressure-Swirl Atomiser[C]. Nottingham: 19th International Conference on Liquid Atomization and Spray Systems, 2004. [92] Ishimoto J, Hoshina H, Tsuchiyama T, et al. Integrated Simulation of the Atomization Process of a Liquid Jet Through a Cylindrical Nozzle [J]. Interdisciplinary Information Sciences, 2007, 13(1): 7-16. [93] Andreini A, Bianchini C, Caciolli G, et al. Multi-Coupled Numerical Analysis of Advanced Lean Burn Injection Systems[C]. Düsseldorf: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 2014. [94] Gicquel L Y M, Staffelbach G, Poinsot T. Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers[J]. Progress in Energy & Combustion Science, 2012, 38(6): 782-817. [95] Shao C, Luo K, Yang J, et al. Accurate Level Set Method for Simulations of Liquid Atomization[J]. Chinese Journal of Chemical Engineering, 2015, 23(4): 597-604. [96] Thibault P, Stewart C R. Robust Conservative Level Set Method for 3D Mixed-Element Meshes—Application to LES of Primary Liquid-Sheet Breakup [J]. Communications in Computational Physics, 2014, 16(2): 403-439. [97] Sander W, Weigand B. Direct Numerical Simulation and Analysis of Instability Enhancing Parameters in Liquid Sheets at Moderate Reynolds Numbers [J]. Physics of Fluids, 2008, 20(5). [98] Hashmi A A, Dullenkopf K, Koch R, et al. CFD Methods for Shear Driven Liquid Wall Films[C]. Glasgow: ASME Turbo Expo 2010: Power for Land, [99] Ménard T, Tanguy S, Berlemont A. Coupling Level Set/VOF/Ghost Fluid Methods: Validation and Application to 3D Simulation of the Primary Break-Up of a Liquid Jet[J]. International Journal of Multiphase Flow, 2007, 33(5): 510-524. [100] 陈福振, 严 红. 旋转剪切气流驱动下文氏管壁液膜流动与破碎过程数值模拟研究[C]. 昆明:中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议, 2019. [101] Herrmann M. A Parallel Eulerian Interface Tracking/Lagrangian Point Particle Multi-Scale Coupling Procedure [M]. USA: Academic Press Professional, Inc., 2010. [102] Jeung I S, Park J H, Hwang S S, et al. Effect of Swirl Cup on Characteristics of Fuel Spray in Gas Turbine Combustors [R]. AIAA 2000-3352. [103] Tolpadi A. A Numerical Study of Two-Phase Flow in Gas Turbine Combustors[C]. Nashville: Joint Propulsion Conference and Exhibit, 1992. [104] Luo K, Pitsch H, Pai M G, et al. Direct Numerical Simulations and Analysis of Three-Dimensional n-Heptane Spray Flames in a Model Swirl Combustor [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2143-2152. [105] Irannejad A, Banaeizadeh A, Jaberi F. Large Eddy Simulation of Turbulent Spray Combustion[J]. Combustion & Flame, 2015, 162(2): 431-450. [106] Vallet A, Borghi R. An Eulerian Model of Atomization of a Liquid Jet [J]. Comptes Rendus de l Académie des Sciences, Series IIB: Mechanics Physics Astronomy, 1999, 327(10): 1015-1020. [107] Vallet A, Burluka A A, Borghi R. Development of a Eulerian Model for the "Atomization" of a Liquid Jet[J]. Atomization & Sprays, 2001, 11(6): 619-642. [108] Philippe V, Blanchard G, Zuzio D. Numerical Simulation of Primary Atomization of a Sheared Liquid Sheet,Part 2: Comparison with Experimental Results[C]. Chania: European Conference on Liquid Atomization and Spray Systems, 2013. [109] Herrmann M. A Parallel Eulerian Interface Tracking/Lagrangian Point Particle Multi-Scale Coupling Procedure[J]. Journal of Computational Physics, 2010, 229(3): 745-759. [110] Tomar Gaurav, Fuster Daniel, Zaleski Stéphane, et al. Multiscale Simulations of Primary Atomization[J]. Computers & Fluids, 2010, 39(10): 1864-1874. [111] Kim D, Moin P. Numerical Simulation of the Breakup of a Round Liquid Jet by a Coaxial Flow of Gas with a Subgrid Lagrangian Breakup Model[R]. Stanford: Annual Research Briefs, Center for Turbulence Research, Stanford University, 2011. [112] Arienti M , Li X , Soteriou M C, et al. Coupled Level-Set/Volume-of-Fluid Method for Simulation of Injector Atomization[J]. Journal of Propulsion and Power, 2013, 29(1): 147-157. [113] Xiaoyi Li , Soteriou Marios C. , Wookyung Kim. High Fidelity Simulation of the Spray Generated by a Realistic Swirling Flow Injector[J]. Atomization and Sprays, 2013, 23(11): 1049-1078. [114] Zuzio D , Estivalèzes, Jean-Luc, Dipierro B. An Improved Multiscale Eulerian-Lagrangian Method for Simulation of Atomization Process[J]. Computers & Fluids, 2018, 176: 285-301. [115] Jian Wen, Yong Hu, Nakanishi Akihiro, et al. Atomization and Evaporation Process of Liquid Fuel Jets in Crossflows: A Numerical Study Using Eulerian/Lagrangian Method[J]. International Journal of Multiphase Flow, 2020, 129(8). [116] Zanetti G, McNamara G R. Use of the Boltzmann Equation to Simulate Lattice-Gas Automata[J]. Physical Review Letters, 1988, 61(20): 2332-2335. [117] Lucy L B. A Numerical Approach to the Testing of the Fission Hypothesis [J]. Astronomical Journal, 1977, 82(12): 1013-1024. [118] Chen S, Doolen G D. Lattice Boltzmann Method for Fluid Flows [J]. Annual Review of Fluid Mechanics, 1998, 30(1): 329-364. [119] Aidun C K, Clausen J R. Lattice-Boltzmann Method for Complex Flows[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 439-472. [120] Safari H, Rahimian M H, Krafczyk M. Consistent Simulation of Droplet Evaporation Based on the Phase-Field Multiphase Lattice Boltzmann Method[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2014, 90(3). [121] Safari H, Rahimian M H, Krafczyk M. Extended Lattice Boltzmann Method for Numerical Simulation of Thermal Phase Change in Two-Phase Fluid Flow[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2013, 88(1). [122] Amirshaghaghi H, Rahimian M H, Safari H. Application of a Two Phase Lattice Boltzmann Model in Simulation of Free Surface Jet Impingement Heat Transfer[J]. International Communications in Heat & Mass Transfer, 2016, 75: 282-294. [123] Pereira G G, Cleary P W, Serizawa Y. Prediction of Fluid Flow Through and Jet Formation from a High Pressure Nozzle Using Smoothed Particle Hydrodynamics[J]. Chemical Engineering Science, 2018, 178(16): 12-26. [124] Hoefler C, Braun S, Koch R, et al. Modeling Spray Formation in Gas Turbines: A New Meshless Approach[J]. Journal of Engineering for Gas Turbines and Power, 2012, 135(1). [125] Koch R , Braun S , Wieth L , et al. Prediction of Primary Atomization Using Smoothed Particle Hydrodynamics[J]. European Journal of Mechanics B: Fluids, 2017, 61(2): 271-278. [126] 韩亚伟, 强洪夫, 刘 虎. 双股液体射流撞击雾化的SPH方法数值模拟[J]. 工程力学, 2013, 30(3): 17-23. [127] 强洪夫, 韩亚伟, 王 广, 等. 幂律型流体雾化SPH方法数值分析 [J]. 推进技术, 2013, 34(2): 240-247. [128] 强洪夫, 刘 虎, 陈福振, 等. 基于SPH方法的射流撞击仿真[J]. 推进技术, 2012, 33(3): 424-429. [129] 强洪夫, 刘 虎, 韩亚伟, 等. 基于SPH方法的凝胶推进剂一次雾化仿真研究 [J]. 固体火箭技术, 2013, 36(1): 61-66. [130] Chen F Z, Yan H. Numerical Simulation on Atomization of Pressure Swirl Injector with Smoothed Particle Hydrodynamics [C]. Fukuoka: 12th Asia-Pacific Conference on Combustion, 2019. [131] Chen F Z, Qiang H F, Gao W R. Numerical Simulation of Bubble Formation at a Single Orifice in Gas-Fluidized Beds with Smoothed Particle Hydrodynamics and Finite Volume Coupled Method[J]. Computer Modeling in Engineering & Sciences, 2015, 104(1): 41-68. [132] Chen F, Qiang H, Gao W. Coupling of Smoothed Particle Hydrodynamics and Finite Volume Method for Two-Dimensional Spouted Beds[J]. Computers & Chemical Engineering, 2015, 77(9): 135-146. [133] Chen F, Qiang H, Zhang H, et al. A Coupled SDPH-FVM Mmethod for Gas-Particle Multiphase Flow: Methodology[J]. International Journal for Numerical Methods in Engineering, 2017, 109(1): 73-101. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:北京7208信箱26分箱
邮政编码:100074
E-mail:tjjs@sina.com
访问总数:今日访问: 版权所有 © 《推进技术》编辑部