推进技术 ›› 2021, Vol. 42 ›› Issue (4): 721-737.DOI: 10.13675/j.cnki.tjjs.210109
• 综述 • 下一篇
王兵1,谢峤峰1,闻浩诚1,滕宏辉2,张义宁3,周林2,3
出版日期:
2021-04-15
发布日期:
2021-04-15
作者简介:
王 兵,博士,特聘研究员,研究领域为喷雾与燃烧推进。E-mail:wbing@mail.tsinghua.edu.cn
Online:
2021-04-15
Published:
2021-04-15
摘要: 爆震是实现增压燃烧的一种重要途径,得益于爆震循环的热效率增益,基于爆震构建的推进装置具有显著的理论性能优势,有希望推动航空航天动力技术的跨越发展。本文在总结经典爆震理论和爆震推进相关的基础科学问题进展的基础上,进一步介绍了连续旋转爆震发动机的低阶模型建立方法以及涡轮式和冲压式连续旋转爆震发动机性能分析等方面的研究进展,并概括了斜爆震发动机的性能分析和关键问题研究进展。最后基于当前研究基础提出对爆震发动机未来研究的展望。
王兵,谢峤峰,闻浩诚,滕宏辉,张义宁,周林. 爆震发动机研究进展[J]. 推进技术, 2021, 42(4): 721-737.
WANG Bing1, XIE Qiao-feng1, WEN Hao-cheng1, TENG Hong-hui2, ZHANG Yi-ning3, ZHOU Lin2,3. Research Progress of Detonation Engines[J]. Journal of Propulsion Technology, 2021, 42(4): 721-737.
[1] Wang B, Wang J P. Introduction to the Special Section on Recent Progress on Rotating Detonation and Its Application[J]. AIAA Journal, 2020, 58(12): 4974-4975. [2] Wolański P. Detonative Propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 125-158. [3] Zhou R, Wu D, Wang J P. Progress of Continuously Rotating Detonation Engines[J]. Chinese Journal of Aeronautics, 2016, 29(1): 15-29. [4] Wang B. Recent Research Progress on Rotating Detonation and Its Application in Different Engines[C]. Beijing: 27th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2019. [5] Xie Q F, Ji Z F, Wen H C, et al. Review on the Rotating Detonation Engine and Its Typical Problems[J]. Transactions on Aerospace Research, 2020, (261): 107-163. [6] Abel F A. Contributions to the History of Explosive Agents[J]. Philosophical Transactions of the Royal Society of London, 1869, 159: 489-516. [7] Berthelot M, Vieille P. L'oude Explosive[J]. Annual Review of Physical Chemistry, 1883, 28(5), 283-332. [8] Fickett W, Davis W C. Detonation: Theory and Experiment (Dover Books on Physics)[M]. New York: Dover Publications, 2000. [9] Campbell C, Woodhead D W. The Ignition of Gases by an Explosion-Wave, Part I: Carbon Monoxide and Hydrogen Mixtures[J]. Journal of the Chemical Society (Resumed), 1926, 129: 3010-3021. [10] Vasil’ev A A. Cell Size as the Main Geometric Parameter of a Multifront Detonation Wave [J]. Journal of Propulsion and Power, 2006, 22(6): 1245-1260. [11] Lee J H S, Radulescu M I. On the Hydrodynamic Thickness of Cellular Detonations[J]. Combustion, Explosion and Shock Waves, 2005, 41: 745-765. [12] Vasil'ev A A. Geometric Limits of Gas Detonation Propagation[J]. Combustion, Explosion and Shock Waves, 1982, 18: 245-249. [13] Vasil'ev A A, Mitrofanov V V, Topchiyan M E. Detonation Waves in Gases[J]. Combustion, Explosion and Shock Waves, 1987, 23: 605-623. [14] Kindracki J, Kobiera A, Wolański P, et al. Experimental and Numerical Study of the Rotating Detonation Engine in Hydrogen-Air Mixtures[J]. Progress in Propulsion Physics, 2011, 2: 555-582. [15] George A S, Driscoll R, Anand V, et al. On the Existence and Multiplicity of Rotating Detonations[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2691-2698. [16] Wen H C, Xie Q F, Wang B. Propagation Behaviors of Rotating Detonation in an Obround Combustor[J]. Combustion and Flame, 2019, 210: 389-398. [17] Urtiew P A, Oppenheim A K. Experimental Observations of the Transition to Detonation in an Explosive Gas[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1966, 295: 13-28. [18] Zhang H L, Liu W D, Liu S J. Effects of Inner Cylinder Length on H2/Air Rotating Detonation[J]. International Journal of Hydrogen Energy, 2016, 41(30). [19] Fotia M L, Hoke J, Schauer F. Study of the Ignition Process in a Laboratory Scale Rotating Detonation Engine[J]. Experimental Thermal and Fluid Science, 2018, 94: 345-354. [20] Voitsekhovskii B V. Maintained Detonations[J]. Doklady Akademi Nauk SSSR, 1959, 129: 1254-1256. [21] Nicholls J A, Cullen R E, Ragland K W. Feasibility Studies of a Rotating Detonation Wave Rocket Motor[J]. Journal of Spacecraft and Rockets, 1966, 3(6): 893-898. [22] Bykovskii F A, Klopotov I D, Mitrofanov V V. Spin Detonation of Gases in a Cylindrical Chamber[J]. Doklady Akademi Nauk USSR, 1975, 224: 1038-1041. [23] Edwards B D. Maintained Detonation Waves in an Annular Channel: A Hypothesis which Provides the Link Between Classical Acoustic Combustion Instability and Detonation Waves[J]. Symposium (International) on Combustion, 1977, 16(1): 1611-1618. [24] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous Spin Detonation in Annular Combustors[J]. Combustion, Explosion and Shock Waves, 2005, 41: 449-459. [25] Hishida M, Fujiwara T, Wolański P. Fundamentals of Rotating Detonations[J]. Shock Waves, 2009, 19(1): 1-10. [26] Kasahara J, Kato Y, Ishihara K, et al. Application of Detonation Waves to Rocket Engine Chamber[M]. Cham: Springer International Publishing, 2018. [27] Wolański P, Kalina P, Balicki W, et al. Development of Gasturbine with Detonation Chamber[M]. Cham: Springer International Publishing, 2018. [28] Liu S J, Liu W D, Wang Y, et al. Free Jet Test of Continuous Rotating Detonation Ramjet Engine[C]. Xiamen: 21st AIAA International Space Planes and Hypersonics Technologies Conference, 2017. [29] Dunlap R, Brehm R L, Nicholls J A. A Preliminary Study of the Application of Steady-State Detonative Combustion to a Reaction Engine[J]. Journal of Jet Propulsion, 1958, 28(7): 451-456. [30] Pratt D T, Humphrey J W, Glenn D E. Morphology of Standing Oblique Detonation Waves[J]. Journal of Propulsion and Power, 1991, 7(5): 1225-1227. [31] 计自飞, 张会强, 谢峤峰, 等. 连续旋转爆震涡轮发动机热力过程与性能分析[J]. 清华大学学报:自然科学版, 2018, 58(10): 899-905. [32] Ji Z F, Zhang H Q, Wang B. Performance Analysis of Dual-duct Rotating Detonation Aero-Turbine Engine[J]. Aerospace Science and Technology, 2019, 92: 806-819. [33] Ji Z F, Zhang H Q, Wang B, et al. Comprehensive Performance Analysis of the Turbofan with a Multi-Annular Rotating Detonation Duct Burner[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(2). [34] Ji Z F, Duan R Z, Zhang R S, et al. Comprehensive Performance Analysis for the Rotating Detonation-Based Turboshaft Engine[J]. International Journal of Aerospace Engineering, 2020, DOI:10.1155/2020/9587813. [35] Ji Z F, Wang B, Zhang H Q, et al. Performance Analysis of the Continuous Rotating Detonation Aero-Turbine Engine[C]. Manchester: 23rd International Symposium on Air Breathing Engines, 2017. [36] Sousa J, Paniagua G, Morata E C. Thermodynamic Analysis of a Gas Turbine Engine with a Rotating Detonation Combustor[J]. Applied Energy, 2017, 195: 247-256. [37] Sichel M, Foster J C. The Ground Impulse Generated by a Plane Fuel-Air Explosion with Side Relief[J]. Acta Astronautica, 1979, 6(3-4): 243-256. [38] Zhou S B, Ma H, Li S, et al. Effects of a Turbine Guide Vane on Hydrogen-Air Rotating Detonation Wave Propagation Characteristics[J]. International Journal of Hydrogen Energy, 2017, 42: 20297-20305. [39] Zhou S B, Ma H, Liu D K, et al. Experimental Study of a Hydrogen-Air Rotating Detonation Combustor[J]. International Journal of Hydrogen Energy, 2017, 42: 14741-14749. [40] Wolański P. Application of the Continuous Rotating Detonation to Gas Turbine[J]. Applied Mechanics and Materials, 2015, 782: 3-12. [41] Naples A, Hoke J, Battelle R, et al. Rotating Detonation Engine Implementation into an Open-Loop T63 Gas Turbine Engine[C]. Texas: 55th AIAA Aerospace Sciences Meeting, 2017. [42] Ji Z F. Comprehensive Performance Analysis of the Continuous Rotating Detonation Based Airbreathing Propulsion Systems[D]. Beijing: Tsinghua University, 2019. [43] Schwer D A, Kailasanath K. Feedback into Mixture Plenums in Rotating Detonation Engines[C]. Tennessee: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012. [44] Schwer D A, Kailasanath K. On Reducing Feedback Pressure in Rotating Detonation Engines[C]. Texas: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2013. [45] Anand V, George St A, Driscoll R, et al. Analysis of Air Inlet and Fuel Plenum Behavior in a Rotating Detonation Combustor[J]. Experimental Thermal and Fluid Science, 2016, 70: 408-416. [46] Liu Z, Braun J, Paniagua G. Three Dimensional Optimization for Subsonic Axial Turbines Operating at High Unsteady Inlet Mach number[C]. Ohio: 2018 Joint Propulsion Conference, 2018. [47] Liu Z, Braun J, Paniagua G. Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(3). [48] Zhdan S A. Mathematical Model of Continuous Detonation in an Annular Combustor with a Supersonic Flow Velocity[J]. Combustion, Explosion, and Shock Waves, 2008, 44: 690-697. [49] Fievisohn R T, Yu K H. Steady-State Analysis of Rotating Detonation Engine Flowfields with the Method of Characteristics[J]. Journal of Propulsion and Power, 2016, 36, 89-99. [50] Braun E M, Lu F K, Wilson D R, et al. Airbreathing Rotating Detonation Wave Engine Cycle Analysis[J]. Aerospace Science and Technology, 2013, 27(1): 201-208. [51] Heiser W H, Pratt D T, Daley D H, et al. Hypersonic Airbreathing Propulsion[M]. Washington D C: American Institute of Aeronautics and Astronautics, Inc., 1994. [52] 张任帅, 计自飞, 王 兵, 等. 基于旋转爆震的火箭基组合循环发动机总体性能分析[C]. 北京:清华大学航天航空学院博士生论坛, 2019. [53] 杨鹏飞, 牟乾辉, 滕宏辉, 等. 旋转爆轰波中多波流动模式的数值研究[J]. 推进技术, 2019, 40(2): 398-406. [54] Teng H H, Zhou L, Yang P F, et al. Numerical Investigation of Wavelet Features in Rotating Detonations with a Two-Step Induction-Reaction Model[J]. International Journal of Hydrogen Energy, 2020, 45: 4991-5001. [55] Schwer D A, Kailasanath K. Numerical Study of the Effects of Engine Size on Rotating Detonation Engines[C]. Florida: 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011. [56] Zhao M J, Cleary M J, Zhang H W. Combustion Mode and Wave Multiplicity in Rotating Detonative Combustion with Separate Reactant Injection[J]. Combustion and Flame, 2021, 225: 291-304. [57] Wang Y W, Sislian J P. Numerical Investigation of Methane and Air Mixing in a Shcramjet Inlet[C]. Ohio: 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2008. [58] Morrison R B. Oblique Detonation Wave Ramjet[R]. NASA CR-159192, 1980. [59] Ashford S A, Emanuel G. Oblique Detonation Wave Engine Performance Prediction[J]. Journal of Propulsion and Power, 1996, 12(2): 322-327. [60] Dudebout R, Sislian J P, Oppitz R. Numerical Simulation of Hypersonic Shock-Induced Combustion Ramjets[J]. Journal of Propulsion and Power, 1998, 14(6): 869-879. [61] 袁生学, 黄志澄. 高超声速发动机不同燃烧模式的性能比较——斜爆轰发动机性能评价[J]. 空气动力学学报, 1995, 13(1): 48-56. [62] Sislian J P, Dudebout R, Schumacher J, et al. Incomplete Mixing and Off-Design Effects on Shock-Induced Combustion Ramjet Performance[J]. Journal of Propulsion and Power, 2000, 16(1): 41-48. [63] Chan J, Sislian J P, Alexander D. Numerically Simulated Comparative Performance of a Scramjet and Shcramjet at Mach 11[J]. Journal of Propulsion and Power, 2010, 26(5): 1125-1134. [64] Wang T, Zhang Y N, Teng H H. Numerical Study on Initiation of Oblique Detonations in Hydrogen-Air Mixtures with Various Equivalence Ratios[J]. Aerospace Science and Technology, 2016, 49: 130-134. [65] Zhang Y, Yang P, Teng H, et al. Transition Between Different Initiation Structures of Wedge-Induced Oblique Detonations[J]. AIAA Journal, 2018, 56: 4016-4023. [66] Zhang Y, Zhou L, Gong J, et al. Effects of Activation Energy on the Instability of Oblique Detonation Surfaces with a One-Step Chemistry Model[J]. Physics of Fluids, 2018, 30(10). [67] Zhang Y N, Pan H, Jia B Y, et al. Experimental Investigation on Initiation of Oblique Detonation Waves[C]. Xiamen: 21st AIAA International Space Planes and Hypersonics Systems and Technology Conference, 2017. [68] Ren Z X, Wang B. Numerical Study on Stabilization of Wedge-Induced Oblique Detonation Waves in Premixing Kerosene-Air Mixtures[J]. Aerospace Science and Technology, 2020, 107(10). [69] Ren Z X, Wang B, Xiang G M, et al. Numerical Analysis of Wedge-Induced Oblique Detonations in Two-Phase Kerosene-Air Mixtures[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3627-3635. [70] Ren Z X, Wang B, Xiang G M, et al. Effect of the Multiphase Composition in a Premixed Fuel-Air Stream on Wedge-Induced Oblique Detonation Stabilisation[J]. Journal of Fluid Mechanics, 2018, 846: 411-427. [71] Liu Y, Wu D, Wang J P. Analytical and Numerical Investigations of Wedge-Induced Oblique Detonation Waves at Low Inflow Mach Number[J]. Combustion Science and Technology, 2015, 187(6): 843-856. [72] Liu Y, Han X D, Yao S B, et al. A Numerical Investigation of the Prompt Oblique Detonation Wave Sustained by a Finite-Length Wedge[J]. Shock Waves, 2016, 26: 729-739. [73] Liu Y, Liu Y S, Wu D, et al. Structure of an Oblique Detonation Wave Induced by a Wedge [J]. Shock Waves 2016, 26:161-168. [74] 林志勇. 高静温超声速预混气爆震起爆与发展过程机理研究[D]. 长沙: 国防科学技术大学, 2008. [75] 林志勇, 周 进, 张继业, 等. 预混超声速气流斜激波诱导脱体爆震研究[J]. 航空动力学报, 2009, 24(1): 50-54. [76] Miao S K, Zhou J, Lin Z Y, et al. Numerical Study on Thermodynamic Efficiency and Stability of Oblique Detonation Waves[J]. AIAA Journal, 2018, 56(8): 3112-3122. [77] Yu M Y, Miao S K. Initiation Characteristics of Wedge-Induced Oblique Detonation Waves in Turbulence Flows[J]. Acta Astronautica, 2018, 147: 195-204. [78] 蔡晓东. 超声速气流中的爆震过程研究[D]. 长沙: 国防科学技术大学, 2016. [79] Cai X, Deiterding R, Liang J, et al. Diffusion and Mixing Effects in Hot Jet Initiation and Propagation of Hydrogen Detonations[J]. Journal of Fluid Mechanics, 2017, (28): 324-351. [80] Chen W, Liang J, Cai X, et al. Three-Dimensional Simulations of Detonation Propagation in Circular Tubes Effects of Jet Initiation and Wall Reflection[J]. Physics of Fluids, 2020, 32(4). [81] 张子健. 斜爆轰推进理论、技术及其实验验证[D]. 北京: 中国科学院大学, 2020. [82] 马凯夫, 张子健, 刘云峰, 等. 斜爆轰发动机流动机理分析[J]. 气体物理, 2019, 4(3): 1-10. [83] Zhang Z, Ma K, Zhang W, et al. Numerical Investigation of a Mach 9 Oblique Detonation Engine with Fuel Pre-Injection[J]. Aerospace Science and Technology, 2020, 105(10). [84] 张子健, 韩 信, 马凯夫, 等. 斜爆轰发动机燃烧机理试验研究[J]. 推进技术, 2021, DOI:10.13675/j.cnki.tjjs.200828. [85] 董 刚, 范宝春, 李鸿志. 圆锥激波诱导的爆燃和爆轰不稳定性研究[J]. 兵工学报, 2010, 31(4):401-408. [86] Gui M Y, Fan B C, Dong G. Periodic Oscillation and Fine Structure of Wedge-Induced Oblique Detonation Waves[J]. Acta Mechanica Sinica, 2011, 27(6): 922-928. [87] Gui M Y, Fan B C. Wavelet Structure of Wedge-Induced Oblique Detonation Waves[J]. Combustion Science and Technology, 2012,184:1456-1470. [88] Yang P, Ng H D, Teng H. Numerical Study of Wedge-Induced Oblique Detonations in Unsteady Flow[J]. Journal of Fluid Mechanics, 2019, 876: 264-287. [89] Yang P, Ng H D, Teng H. Unsteady Dynamics of Wedge-Induced Oblique Detonations under Periodic Inflows[J]. Physics of Fluids, 2021, 33(1). [90] Teng H H, Tian C, Zhang Y N, et al. Morphology of Oblique Detonation Waves in a Stoichiometric Hydrogen-Air Mixture[J]. Journal of Fluid Mechanics, 2021, 913(A1). [91] Bian J, Zhou L, Teng H. Structural and Thermal Analysis on Oblique Detonation Influenced by Different Forebody Compressions in Hydrogen-Air Mixtures[J]. Fuel, 2021, 286(2). [92] Wang K, Zhang Z, Yang P, et al. Numerical Study on Reflection of an Oblique Detonation Wave on an Outward Turning Wall[J]. Physics of Fluids, 2020, 32(4). [93] Wang K, Teng H, Yang P, et al. Numerical Investigation of Flow Structures Resulting from the Interaction Between an Oblique Detonation Wave and an Upper Expansion Corner[J]. Journal of Fluid Mechanics, 2020, 903(A28). |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
地址:北京7208信箱26分箱
邮政编码:100074
E-mail:tjjs@sina.com
访问总数:今日访问: 版权所有 © 《推进技术》编辑部