推进技术 ›› 1993, Vol. 14 ›› Issue (2): 69-73.
• • 上一篇 下一篇
高鸣
发布日期:
Published:
摘要: 以高聚物静态松弛模量E(t),静态体积模量K(t)和静态粘弹泊松比ν(t)之间的积分变换关系为基础,采用对其求拉氏逆变换和数值积分的方法,用计算机计算其粘弹泊松比,并选择了三种不同配方固体推进剂实测的E(t)和K(t)实验值做为实际算例。计算结果表明,由该方法计算的粘弹泊松比和实验得到的粘弹泊松比以及理论上推导的粘弹泊松比均一致,且该方法简单、实用、方便,精度高。
关键词: 固体推进剂;粘弹性;泊松比;数值法和计算方案
Abstract: Based on the integral transform relations of stress relaxation modulus E(t), body modulus K(t), and viscoelastic poisson ratio v(t), the viscoelastic poisson ratio solid propellant is calculated in the paper by using the inversion of the Laplace transform and numerical integral. The ratio valuesare demonstrated with three different kinds of solid propellant. Good agreement of computational results with experimental data shows that the method is very simple and accurate.
Key words: Solid propellat;Viscoelastic property;Poisson ratio;Nu- merical method and procedure
高鸣. 计算固体推进剂粘弹泊松比的一种新方法[J]. 推进技术, 1993, 14(2): 69-73.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://jpt.tjjsjpt.com/CN/
http://jpt.tjjsjpt.com/CN/Y1993/V14/I2/69
小助手微信:tjjsxzs
公众号:casic-tjjs
《推进技术》手机版