推进技术 ›› 1996, Vol. 17 ›› Issue (3): 64-67.
• • 上一篇 下一篇
高鸣
发布日期:
Published:
摘要: 以粘弹理论为基础,采用拉氏逆变换和数值积分的方法,推导出由拉伸松弛模量E(t)、粘弹泊松比v(t)计算固体推进剂体积松弛模量K(t)的计算公式和数值解法。计算结果表明,由该方法计算的K(t)值和实验得到的K(t)值一致,且该方法简单、实用、方便、精度高。
关键词: 固体推进剂;粘弹性;体积弹性模量;数值计算
Abstract: n base of viscoelastic theory and using inversion of the Laplace transform and numerical calculation method,a formation and a numerical solution for bulk relaxation modulus K(t) from stress tension modulus E(t) and viscoclastic poisson ratio v(t) are obtained.The calculation results show good agreement with experimental data K(t).The method is very simple and accurate.
Key words: Solid propellant;Viscoclasticity;Bulk moduls;Numerical calculation
高鸣. 固体推进剂体积松驰模量的数值解法[J]. 推进技术, 1996, 17(3): 64-67.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://jpt.tjjsjpt.com/CN/
http://jpt.tjjsjpt.com/CN/Y1996/V17/I3/64
小助手微信:tjjsxzs
公众号:casic-tjjs
《推进技术》手机版