推进技术 ›› 2007, Vol. 28 ›› Issue (1): 82-85.

• • 上一篇    下一篇

基于小波分形和一类辨识的航空发动机故障诊断

罗俊,何立明,陈超   

  1. 西安空军工程大学工程学院 陕西西安710038;西安空军工程大学工程学院 陕西西安710039;西安空军工程大学工程学院 陕西西安710040
  • 发布日期:2021-08-15

Aeroengine fault diagnoisis based on one-class classification and wavlet-fractal

  1. Engineering Inst.,Air Force Engineering Univ.,Xi’an 710038,China;Engineering Inst.,Air Force Engineering Univ.,Xi’an 710039,China;Engineering Inst.,Air Force Engineering Univ.,Xi’an 710040,China
  • Published:2021-08-15

摘要: 在支持向量机理论的基础上,针对支持向量机的二类辨识传统,引入了基于支持向量机的一类辨识理论。设计了航空发动机几种典型故障的一类分类器,使得发动机的故障诊断更加简单可行。同时,将小波分形方法引入到航空发动机振动信号的特征提取中。通过对航空发动机典型故障的成功诊断,证明了该方法的有效性。

关键词: 航空发动机;一类辨识+;支持向量机+;小波分形+;故障诊断

Abstract: Based on SVM(support vector machines) theory,one-class identification theory was introduced.Several classification models,which make the aeroengine fault diagnosis become more simple and viable,were designed based on one-class identification theory.In addition,wavlet-fractal was used to extract feature of aeroengine vibration data.Successful application has been achieved to detect several typical fault of aeroengine.The results show that the one class identification can provide a new effective technology to reveal fault of aeroengine.

Key words: Aeroengine;One-class identification+;SVM+;Wavlet-fractal;Fault diagnosis