推进技术 ›› 2008, Vol. 29 ›› Issue (5): 614-616.
• • 上一篇 下一篇
杨伟,冯雷星,彭靖波,王海涛
发布日期:
Published:
摘要: 针对传统求解方法收敛性不强而遗传算法求解效率较低的问题,利用BP神经网络逼近发动机平衡方程的反函数,将求解结果作为Newton-Raphson法的初值,提出了求解模型的混合智能方法。仿真结果表明,该方法可以保证非线性数学模型在整个飞行包线范围内收敛,与遗传算法相比又提高了求解效率。
关键词: 航空发动机;数学模型;平衡方程;神经网络
Abstract: Current solutions are not always convergent while genetic algorithm is inefficient.Because of this,BP neural networks was used to approach the inverse function of balance equations,and the approximate solution was used as the initial value of Newton-Raphson algorithm,thus an intelligent algorithm is proposed.Simulation results show that this algorithm can make nonlinear mathematical model for aeroengine convergent in the entire flight envelope,and also has higher efficiency compared with genetic algorithm.
Key words: Aeroengine;Mathematical model;Balance equations;Neural networks
杨伟,冯雷星,彭靖波,王海涛. 求解航空发动机数学模型的混合智能方法[J]. 推进技术, 2008, 29(5): 614-616.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://jpt.tjjsjpt.com/CN/
http://jpt.tjjsjpt.com/CN/Y2008/V29/I5/614
小助手微信:tjjsxzs
公众号:casic-tjjs
《推进技术》手机版