[2] Meller A M.Design of modern turbine combustor [M].New York:Academic Press Inc., 1990: 59-100. [3] Aldabagh A M, Andrews G E, Abdul Husain R A A, et al.Impingement/effusion cooling:the influence of the number of impingement holes and pressur losson the heat transfer coefficient[R].ASME 89-GT-188. [4] Andrews G E,Asere A A, Hussain C I, et al.Transpiration and impingement/effusion cooling of gas turbine combustion chambers[R].ISABE 85-7095. [5] 许全宏,林宇震,刘高恩.冲击-发散复合冷却方式发散壁换热系数研究[J].航空动力学报,2004,19(2) :213-218. [6] 许全宏,林宇震,刘高恩.主燃烧室冲击/发散双层壁冷却方式壁温验证试验研究[J].航空动力学报,2005,20(2):197-201. [7] 许全宏,林宇震,刘高恩.冲击加多斜孔双层壁冷却方式流量系数研究[J].推进技术, 0,1(5):49-52.(XU Quan-hong,LIN Yu-zhen, LIU Gao-en.Discharge coefficient of double wall with discrete-hole and inclined multihole for combustor liner[J].Journal of Propulsion Technology, 0,1(5):49-52.) [8] Choe H, Kay W M, Mlffat R J.Turbulent boundary layer on a full-coverage film-cooled surface-an experimental heat transfer study with normal injection[R].Stanford University:Rep.Hmt-2,3. [9] 许全宏,林宇震,刘高恩.冲击加多斜孔双层壁冷却方式冲击换热系数[J].大连理工大学学报, 1,1(S1):61-63. [10] Myers G,Sanborn J.Comparison of advanced cooling concepts using color thermography[R].AIAA 85-1289. [11] 林宇震,俞文利,刘高恩,等.冲击加发散双层壁冷却方式压将分配对斜孔内对流换热影响的研究[J].航空学报, 3,4(2):97-101. [12] Wassell A B,Bhangu J K.The development and application of improved combustor wall cooling techniques[R].ASME 80-GT-66. [13] Nealy D A, Reider S B.Evalution of laminated porous wall materials for combustor liner cooling[R].ASME 79-GT-100.
|