推进技术 ›› 2013, Vol. 34 ›› Issue (11): 1557-1566.

• 控制 测量 故障诊断 • 上一篇    下一篇

基于距离代价函数和信息熵的发动机性能参数估计研究

李 冬1, 李本威2, 孙 涛2, 曹明川1, 王永华1,2   

  1. 海军航空工程学院 研究生管理大队, 山东 烟台 264001;海军航空工程学院 飞行器工程系, 山东 烟台 264001;海军航空工程学院 飞行器工程系, 山东 烟台 264001;海军航空工程学院 研究生管理大队, 山东 烟台 264001;海军航空工程学院 研究生管理大队, 山东 烟台 264001
  • 发布日期:2021-08-15
  • 作者简介:李 冬(1984—),男,博士生,研究领域为航空发动机性能衰退、评估与预测。 E-mail:happyli.dong@163.com

Research of Engine Performance Parameter Estimation Based on Distance Cost Function and Information Entropy

  1. Graduate Student Brigade, Naval Aeronautical and Astronautical University, Yantai 264001, China;Department of Aero-craft Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China;Department of Aero-craft Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China;Graduate Student Brigade, Naval Aeronautical and Astronautical University, Yantai 264001, China;Graduate Student Brigade, Naval Aeronautical and Astronautical University, Yantai 264001, China
  • Published:2021-08-15

摘要: 研究发动机部件性能参数变化规律,对于减少维修次数和推动视情维修具有重要意义。针对测量参数个数少于待估性能参数的情况,给出了一种通过构建代价函数和优化算法的参数估计方法。原代价函数只考虑当前点参数,缺少与前面点参数的联系,因此结合自组织神经网络,构造了包含以前与当前点参数的距离代价函数。并提出了一种快速的参数估计方法。由于准确的部件性能参数很难获取,并且参数趋势估计不同于单纯的点估计问题,以对应的测量参数为基础,利用信息熵方法评定部件性能参数估计效果。进一步得到距离代价函数对应的参数信息熵为0.6805,优于原代价函数的估计结果。最后通过实例验证了参数估计方法的有效性。 

关键词: 代价函数;信息熵;性能衰退;自组织映射;参数优化 

Abstract: It has profound meaning for reducing maintenance times and promoting condition-based maintenance to study the change of component performance parameter. Aiming at the number of measured parameter less than that of pre-predicting performance parameter, a parameter estimation method by establishing cost function and optimization algorithm was showed. Current parameter being only considered in primary cost function, lacking of relationship of former parameter, therefore distance cost function of former and current parameter was established combined with self Organization Map(SOM). Fast parameter estimated method was presented. Exact component performance parameter is difficult to obtain, and estimation of parameter trend is different from that of pure point. Information entropy of measured parameter is adopted as evaluating parameter estimation. Furtherly, information entropy corresponding to distance cost function is 0.6805, superior to estimation of former cost function. Finally, it verified effectiveness of parameter estimation method presented.

Key words: Cost function; Information entropy; Performance deterioration; SOM(Self Organization Map) ; Parameter optimization