推进技术 ›› 2013, Vol. 34 ›› Issue (5): 595-602.

• 气动热力学 • 上一篇    下一篇

基于改进SST模型的分离流动数值模拟

甘文彪,周 洲,许晓平,王 睿   

  1. 西北工业大学 无人机特种技术重点实验室,陕西 西安 710072;西北工业大学 无人机特种技术重点实验室,陕西 西安 710072;西北工业大学 无人机特种技术重点实验室,陕西 西安 710072;西北工业大学 无人机特种技术重点实验室,陕西 西安 710072
  • 发布日期:2021-08-15
  • 作者简介:甘文彪(1985—),男,博士生,研究领域为计算流体力学与飞行器气动优化设计。E-mail:ganhope@126.com
  • 基金资助:
    国家装备预研基金(9140A25010312HK0301);国家自然基金(11202162)。

Investigation on Improving the Capability of Predicting Separation in Modified SST Turbulence Model

  1. Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi’an 710072, China;Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi’an 710072, China;Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi’an 710072, China;Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi’an 710072, China
  • Published:2021-08-15

摘要: 对SST湍流模型进行了改进,并通过对典型分离流动进行数值模拟,来检验和提高模型预测分离流动的能力。基于亚声速分离流动,提出了提高雷诺应力的模拟精度和分离流修正的改进方法,并进行了对比研究得出结论;在亚声速分离流动分析结论基础上,采用了可压缩性修正方法,开展了跨声速、超声速和高超声速激波/边界层干扰分离流动的数值模拟研究。结果表明:提高雷诺应力的模拟精度和采用分离流修正明显地提高了SST湍流模型对分离流动的模拟能力;适当地可压缩性修正对超声速和高超声速分离流动的计算精度有改善作用。 

关键词: SST湍流模型;分离流;雷诺应力;可压缩性修正;激波/边界层干扰 

Abstract: To verify and improve the capability of predicting separation, SST turbulence model was modified and applied to simulate separation flows. Firstly, starting from the property of subsonic, Reynolds stress simulation improvement and separation correction were used, some significant conclusions were reached from comparison. Secondly, based on hypersonic and supersonic, the modified model employed compressibility correction and simulated shock wave/boundary-layer interaction in transonic, supersonic and hypersonic. Finally, the results show that Reynolds stress simulation improvement and separation correction can improve the capability of predicting separation and suitable compressibility correction obviously improves the capability of prediction supersonic and hypersonic separation flow.

Key words: SST turbulence model; Separation flow; Reynolds stresses; Compression modification; Shock wave /boundary-layer interaction