推进技术 ›› 2014, Vol. 35 ›› Issue (1): 115-122.

• 材料 推进剂 燃料 • 上一篇    下一篇

基于原位拉伸的推进剂/衬层界面力学性能研究

邱 欣1,李高春2,丁 彪1,曹名川1   

  1. 海军航空工程学院 研究生管理大队,山东 烟台 264001;海军航空工程学院 飞行器工程系,山东 烟台 264001;海军航空工程学院 研究生管理大队,山东 烟台 264001;海军航空工程学院 研究生管理大队,山东 烟台 264001
  • 发布日期:2021-08-15
  • 作者简介:邱 欣(1985—),男,博士生,研究领域为固体火箭发动机寿命预估。E-mail:qiuqiulizh2012@sina.com
  • 基金资助:
    武器装备预研基金项目(9140A280102)。

Study on Propellant/Liner Interface Mechanical Property Using In-Situ Tensile Method

  1. Graduate Management Team, Naval Aeronautical Engineering Institute,Yantai 264001,China;Department of Aircraft Engineering, Naval Aeronautical Engineering Institute,Yantai 264001,China;Graduate Management Team, Naval Aeronautical Engineering Institute,Yantai 264001,China;Graduate Management Team, Naval Aeronautical Engineering Institute,Yantai 264001,China
  • Published:2021-08-15

摘要: 为了解释某种HTPB复合固体推进剂/衬层粘接试件载荷-位移曲线的“双峰”特征,设计了一种基于推进剂/衬层微型试件的原位拉伸试验方法,根据界面细观破坏形态与载荷变化过程,提出了界面处颗粒脱湿及基体断裂过程分别对应两个载荷峰的假设。采用改进的并联Maxwell元件模型对界面断裂行为进行了模拟计算,重现了断裂过程的载荷-位移曲线的“双峰”特征,验证了假设的合理性。通过模拟计算实测曲线,给出了推进剂基体与颗粒之间的近似粘接强度等参数,为推进剂/衬层粘接系统细观材料参数计算方法提供了一种参考。 

关键词: 粘接界面;原位拉伸;失效模式;细观力学 

Abstract: In order to explain a double peak feature of an HTPB composite solid propellant/liner specimen load-displacement curve, an in-situ tensile method based on a kind of miniature specimen was devised. According to the microscopic fracture process and tensile curves of miniature specimens, a hypothesis was proposed that, the dewetting of granulated filler along the interface and breaking of the binder caused the double peak feature. By simulating the fracture process of propellant/liner interface with improved parallel Maxwell model method, the load-displacement curve with double peak feature was regenerated, which verified the rationality of the hypothesis. By simulating the test curve, several micro mechanical parameters such as the approximate strength of particle-binder interface strength was given, which provided a referable method to compute the micro mechanical parameter of propellant/liner adhesive system. 

Key words: Adhesive interface; In-situ tensile; Fracture mode; Mesoscopic mechanism