[1] Balachandran R, Ayoola B O, Kaminski C F, et al. Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations[J]. Combustion and Flame, 2005, 143 (1-2): 37-55.
[2] Ducruix S, Durox D, Candel S. Theoretical and Experimental Determinations of the Transfer Function of a Laminar Premixed Flame[J]. Proceedings of the Combustion Institute, 2000, 28 (1): 765-773.
[3] Varoquie B, Legier J P, Lacas F, et al. Experimental Analysis and Large Eddy Simulation to Determine the Response of Non-premixed Flames Submitted to Acoustic Forcing[J]. Proceedings of the Combustion Institute, 2002, 29 (Part 2): 1965-1970.
[4] Zhaopu Yao, Min Zhu. A Distributed Transfer Function for Non-Premixed Combustion Oscillations[J]. Combustion Science and Technology, 2012, 184(6): 767-790.
[5] 姚兆普, 朱民. 非预混火焰热斑产生和演化的理论计算[J]. 推进技术, 2012, 33(4): 530-535(YAO Zhao-pu, ZHU Min. Analytical Calculation of Generation and Evolution of Hot Spots in Non-Premixed Flames[J]. Journal of Propulsion Technology, 2012, 33(4): 530-535.)
[6] Huerre P, Monkewitz P A. Local and Global Instabilities in Spatially Developing Flows[J]. Annual Review of Fluid Mechanics, 1990, 22: 473-537.
[7] Tong A Y, Sirignano W A. Oscillatory Vaporization of Fuel Droplets in an Unstable Combustor[J]. Journal of Propulsion and Power, 1989, 5 (3): 257-261.
[8] Greenberg J B, Katoshevski D. The Influence of Droplet Grouping on a Burke-Schumann Spray Diffusion Flame in an Oscillating Flow Field[J]. Proceedings of the Combustion Institute, 2011, 33 (Part 2): 2055-2062.
[9] Greenberg J B, Katoshevski D. Spray Flame Dynamics with Oscillating Flow and Droplet Grouping[J]. Combustion Theory and Modelling, 2012, 16 (2): 321-340.
[10] Kim K T, Lee J G, Quay B D, et al. Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustors[J]. Combustion and Flame, 2010, 157(9): 1718-1730.
[11] Wang Q, Darabkhani H G, Chen L, et al. Vortex Dynamics and Structures of Methane/Air Jet Diffusion Flames with Air Coflow[J]. Experimental Thermal and Fluid Science, 2012, 37: 84-90.
[12] Juniper M P, Li L, Nichols J W. Forcing of Self-excited Round Jet Diffusion Flames[J]. Proceedings of the Combustion Institute, 2009, 32: 1191-1198.
[13] Tyagi M, Jamadar N, Chakravarthy S R. Oscillatory Response of an Idealized Two-dimensional Diffusion Flame: Analytical and Numerical Study[J]. Combustion and Flame, 2007, 149 (3): 271-285.
[14] Tyagi M, Chakravarthy S R, Sujith R I. Unsteady Combustion Response of a Ducted Non-premixed Flame and Acoustic Coupling[J]. Combustion Theory and Modelling, 2007, 11(2): 205-226.
[15] Hardalupas Y,Orain M. Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame[J]. Combustion and Flame, 2004, 139 (3): 188-207.
[16] Katta V R, Goss L P, Roquemore W M. Numerical Investigations of Transitional H2/N2 Jet Diffusion Flames[J]. AIAA Journal, 1994, 32 (1): 84-94.
[17] Goss L P, Katta V R, Roquemore W M. Simulation of Vortical Structures in a Jet Diffusion Flame[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 1994, 4 (5): 413-424.
[18] Arai M, Sato H, Amagai K. Gravity Effects on Stability and Flickering Motion of Diffusion Flames[J]. Combustion and Flame, 1999, 118 (1): 293-300.
[19] Cumpsty N A, Marble F E. The Interaction of Entropy Fluctuations with Turbine Blade Rows; a Mechanism of Turbojet Engine Noise[J]. Proceedings of the Royal Society of London, A, Mathematical and Physical Sciences, 1977, 357(1690): 323-344.(编辑:史亚红) * 收稿日期:2013-12-16;修订日期:2014-03-12。基金项目:国家自然科学基金(51376107);高超声速冲压发动机技术重点实验室基金(L13178)。作者简介:景李玥(1989-),男,博士生,研究领域为非预混火焰燃烧不稳定。E-mail: jingliyue@126.com
|