[1] 刘伟雄, 杨阳, 邵菊香, 等. 空气污染组分H2O和CO2对乙烯燃烧性能的影响[J]. 物理化学学报, 2009(8): 1618-1622.
[2] Bhargava A, Westmoreland P R. Measured Flame Structure and Kinetics in a Fuel-Rich Ethylene Flame[J].Combustion and Flame, 1998, 113(3): 333-347.
[3] Lu T, Law C K.Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations[J]. Progress in Energy and Combustion Science, 2009, 35(2): 192-215.
[4] Marinov N M, Pitz W J, Westbrook C K, et al. Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame[J]. Combustion and Flame, 1998, 114(1): 192-213.
[5] Qin Z, Lissianski V V, Yang H, et al. Combustion Chemistry of Propane: A Case Study of Detailed Reaction Mechanism Optimization[J]. Proceedings of the Combustion Institute, 2000, 28(2): 1663-1669.
[6] Carriere T, Westmoreland P R, Kazakov A, et al. Modeling Ethylene Combustion From Low to High Pressure[J]. Proceedings of the Combustion Institute,2002, 29(1): 1257-1266.
[7] ó Conaire M, Curran H J, Simmie J M, et al. A Comprehensive Modeling Study of Hydrogen Oxidation[J].International Journal of Chemical Kinetics, 2004, 36(11): 603-622.
[8] Hai Wang, Xiaoqing You, Ameya V Joshi, et al. USC Mech Version II.High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds[EB/OL]. http://ignis.usc.edu/USC_Mech_II.htm, 2007.
[9] Chen Z. Studies on the Initiation, Propagation, and Extinction of Premixed Flames[D]. USA: Princeton University, 2009.
[10] 钱炜祺, 杨顺华, 肖保国, 等. 碳氢燃料点火燃烧的简化化学反应动力学模型[J]. 力学学报, 2007, 39(1): 37-44.
[11] Prager J, Najm H N, Valorani M, et al. Skeletal Mechanism Generation with CSP and Validation for Premixed n-Heptane Flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 509-517.
[12] Lu T, Law C K.A Directed Relation Graph Method for Mechanism Reduction[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1333-1341.
[13] Nagy T, Turányi T. Reduction of Very Large Reaction Mechanisms Using Methods Based on Simulation Error Minimization[J]. Combustion and Flame, 2009, 156(2): 417-428.
[14] Ren Z, Pope S B.Species Reconstruction Using Pre-Image Curves[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1293-1300.
[15] Turányi T.Sensitivity Analysis of Complex Kinetic Systems.Tools and Applications[J]. Journal of Mathematical Chemistry, 1990, 5(3): 203-248.
[16] Tomlin A S, Pilling M J, Turányi T, et al. Mechanism Reduction for the Oscillatory Oxidation of Hydrogen: Sensitivity and Quasi-Steady-State Analyses[J]. Combustion and Flame, 1992, 91(2): 107-130.
[17] Whitehouse L E, Tomlin A S, Pilling M J. Systematic Reduction of Complex Tropospheric Chemical Mechanisms, Part I: Sensitivity and Time-Scale Analyses[J]. Atmospheric Chemistry and Physics, 2004, 4(7): 2025-2056.
[18] Vajda S, Valko P, Turányi T. Principal Component Analysis of Kinetic Models[J]. International Journal of Chemical Kinetics, 1985, 17(1): 55-81.
[19] Brown N J, Li G, Koszykowski M L. Mechanism Reduction Via Principal Component Analysis[J]. International Journal of Chemical Kinetics, 1997, 29(6): 393-414.
[20] Lu T, Ju Y, Law C K. Complex CSP for Chemistry Reduction and Analysis[J].Combustion and Flame, 2001, 126(1-2): 1445-1455.
[21] Massias A, Diamantis D, Mastorakos E, et al. An Algorithm for the Construction of Global Reduced Mechanisms with CSP Data[J]. Combustion and Flame, 1999, 117(4): 685-708.
[22] Pepiot-Desjardins P, Pitsch H. An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms[J]. Combustion and Flame, 2008, 154(1-2): 67-81.
[23] Lu T, Law C K. Strategies for Mechanism Reduction for Large Hydrocarbons: n-Heptane[J]. Combustion and Flame, 2008, 154(1-2): 153-163.
[24] Sun W, Chen Z, Gou X, et al. A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms[J]. Combustion and Flame, 2010, 157(7): 1298-1307.
[25] 苟小龙, 王卫, 桂莹, 等. 一种多代路径通量分析化学机理简化方法[J]. 推进技术. 2012, 33(3): 412-417. (GOU Xiao-long, WANG Wei, GUI Ying, et al., Chemical Reaction Mechanism Reduction Method Using Paths Flux Analysis of Multi Generations[J]. Journal of Propulsion Technology, 2012, 33(3): 412-417.)
[26] Zsély I G, Nagy T, Simmie J M, et al. Reduction of a Detailed Kinetic Model for the Ignition of Methane/Propane Mixtures at Gas Turbine Conditions Using Simulation Error Minimization Methods[J]. Combustion and Flame, 2011, 158(8): 1469-1479.
[27] Zambon A C, Chelliah H K. Explicit Reduced Reaction Models for Ignition, Flame Propagation, and Extinction of C2H4/CH4/H2 and Air Systems[J]. Combustion and Flame, 2007, 150(1-2): 71-91.
[28] 刘建文, 熊生伟, 马雪松. 基于DRG和QSSA方法的煤油详细燃烧机理简化[J]. 推进技术.2011,32(4): 525-529.(LIU Jian-wen, XIONG Sheng-wei, MA Xue-song.Reduction of Kerosene Detailed Combustion Reaction Mechanism Based on DRG and QSSA[J]. Journal of Propulsion Technology, 2011, 32(4): 525-529.)
[29] Maas U, Pope S B. Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space[J]. Combustion and Flame, 1992, 88(3-4): 239-264.
[30] Ren Z, Pope S B. The Use of Slow Manifolds in Reactive Flows[J].Combustion and Flame, 2006, 147(4): 243-261.
[31] Chen J Y, Tham Y F. Speedy Solution of Quasi-Steady-State Species by Combination of Fixed-Point Iteration and Matrix Inversion[J]. Combustion and Flame, 2008, 153(4): 634-646.
[32] 于浩, 陈正, 苟小龙. 乙烯氧化机理的简化[J].工程热物理学报, 2013, (2): 376-379.
[33] Luo Z, Yoo C S, Richardson E S, et al. Chemical Explosive Mode Analysis for a Turbulent Lifted Ethylene Jet Flame in Highly-Heated Coflow[J]. Combustion and Flame, 2012, 159(1): 265-274.
[34] Luo Z, Lu T, Liu J. A Reduced Mechanism for Ethylene/Methane Mixtures With Excessive NO Enrichment[J]. Combustion and Flame, 2011, 158(7): 1245-1254.
[35] Smith G P, Golden D M, Frenklach M. GRI-Mech 3.0.[EB/OL]. http://www.me.berkeley.edu/gri_mech/., 2013.
[36] Liu A-K, Wang F, Li X-Y. Approximate Trajectory Optimization Algorithm for Mechanism Reduction of n-Heptane Oxidation[C]. San Francisco: 35th International Symposium on Combustion, 2014.
[37] Lindberg B. Error Estimation and Iterative Improvement for Discretization Algorithms[J]. BIT Numerical Mathematics, 1980, 20(4): 486-500.
[38] Davenport A, Tsang E, Wang C J, et al. Genet: A Connectionist Architecture for Solving Constraint Satisfaction Problems by Iterative Improvement[C]. Seattle: Proceedings of the National Conference on Artificial Intelligence, 1994.
[39] Curran H J, Gaffuri P, Pitz W J, et al. A Comprehensive Modeling Study of Iso-Octane Oxidation[J].Combustion and Flame, 2002, 129(3): 253-280.
[40] Gou X, Sun W, Chen Z, et al. A Dynamic Multi-TimesCale Method for Combustion Modeling With Detailed and Reduced Chemical Kinetic Mechanisms[J]. Combustion and Flame, 2010, 157(6): 1111-1121.
[41] Ju Y. PFA Software Package[EB/OL].http://engine.princeton.edu/.
[42] Lutz A E, Kee R J, Miller J A. Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis[R]. SAND87-8248.
[43] Kee R J, Rupley F M, Miller J A. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics[R]. SAND89-8009B.
[44] Jomaas G, Zheng X L, Zhu D L, et al. Experimental Determination of Counterflow Ignition Temperatures and Laminar Flame Speeds of C2-C3 Hydrocarbons at Atmospheric and Elevated Pressures[J]. Proceedings of the Combustion Institute, 2005, 30(1): 193-200.(编辑:朱立影) * 收稿日期:2014-01-09;修订日期:2014-03-05。基金项目:国家自然科学基金(20973118;91016002)。作者简介:刘爱科 (1980—),男,博士生,研究领域为航空燃料化学。E-mail: cwnu@qq.com
|