[1] Smirnov N N, Nikitin V F, Boichenko A P, et al. Deflagration to Detonation Transition in Gases and Its Application to Pulsed Detonation Devices[C]. Moscow: Gaseous and Heterogeneous Detonations, 1999.
[2] Li C, Kailasanath K. Detonation Initiation in Pulse Detonation Engines[R]. AIAA 2003-1170.
[3] Kailasanath K. Recent Developments in the Research on Pulse Detonation Engines[J]. AIAA Journal, 2003, 38: 1698–1708.
[4] Kaneshige M, Shepherd J E. Detonation Database[R].GALCIT Technical Report FM97-8.
[5] Meshkov E E. Reflection of a Plane Shock Wave from a Rigid Concave Wall[J]. Fluid Dynamics, 1970, 5: 554-558.
[6] Sturtevant E, Kulkamy V A. The Focusing of Weak Shock Waves[J]. Journal of Fluid Mechanics, 1976, 73: 651-671.
[7] Nishida M, Kishige H. Numerical Simulation of Focusing Process of Reflected Shock Waves[C]. Aachen,FRG: 16th Int Symp Shock Tubes and Waves, 1988.
[8] Sommerfeld M, Muller H M. Experimental and Numerical Studies of Shock Wave Focusing in Water[J]. Experiments in Fluid, 1988, 6: 209-216.
[9] Nishida M, Nakagawa T, Kikuyama Y. Focusing of Reflected Shock Waves[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 1986, 28: 209-217.
[10] Nishida M, Nakagawa T, Saito T, et al. Interaction of Weak Shock Waves Reflected on Concave Walls[C]. Stanford: 15th lnt Symp Shock Waves and Tubes, 1986.
[11] 吴龙男. 抛物面反射体上激波聚焦引起涡流现象之实验及数值研究[D]. 台湾:台湾国立成功大学, 1997.
[12] [Gronig]H. Shock Focusing Phenomena[C]. Stanford: 15th Int Symp Shock Waves and Tubes, 1986.
[13] [Gronig]H. Past, Present and Future of Shock Focusing Research[C]. Sendal: Proceeding of International Workshop for Shock Wave Focusing, 1990.
[14] Kishige H, Teshima K, Nishida M. Focusing of Shock Waves Reflected from an Axisymmetric Parabolic Wall[J]. Shock Waves, 1991, 1(4): 341-345.
[15] Liang S.M, Wu L N, Hsu R L. Numerical Simulation of Shock Wave Focusing over Parabolic Reflectors[J]. Shock Waves, 1995, 5(3): 139-148.
[16] Skews B W, Kleine H. Flow Features Resulting from Shock Wave Impact on a Cylindrical Cavity[J]. Journal of Fluid Mechanics, 2007, 580: 481-493.
[17] Bond C, Hill D J, Meiron D I, et al. Shock Focusing in a Planar Convergent Geometry: Experiment and Simulation[J]. Journal of Fluid Mechanics, 2009, 641: 297-333.
[18] Chanck. Collision of a Shock Wave with Obstacles in a Combustible Mixture[J]. Combustion and Flame, 1995, 100: 341~348.
[19] Gelfand B E, Khomik S V, Bartenev A M, et al. Detonation and Deflagration Initiation at the Focusing of Shock Waves in Combustible Gaseous Mixture[J]. Shock Waves, 2000, 10(3): 197-204.
[20] Bartenev A M, Khomik S V, Gelfand B E, et al. Effect of Reflection Type on Detonation Initiation at Shock Wave Focusing [J]. Shock Waves, 2000, 10: 205-215.
[21] Gelfand B E. Visualization of Self-ignition Regimes in Hydrogen-air Mixtures under Shock Waves Focusing[C]. Aachen: 24th International Congress on High-Speed Photography and Photonics, 2001.
[22] Ben-Dor G. Shock Wave Reflection Phenomena (2st Ed.)[M]. Berlin: Springer-Verlag, 2007.
[23] Skews B W, Kleine H. Flow Features Resulting from Shock Wave Impact in a Cylindrical Cavity[J]. Journal of Fluid Mechanics, 2007, 580: 481-493.
[24] Shugaev F V, Serov A O, Shtemenko L S. Formation of a Jet and Vortices behind a Shock Wave Reflected from a Concave Body[J]. Shock Waves, 1999, 9(1): 31-35.
[25] Jung Y G, Chang K S. Shock Focusing Flow Field Simulated by a High-Resolution Numerical Algorithm[J]. Shock Waves, 2012, 22(6): 641-645.
[26] Skews B W, Kleine H. New Flow Features in a Cavity During Shock Wave Impact[C]. Crown Plaza: 16th Australasian Fluid Mechanics Conference, 2007.
[27] Babinsky H, Takayama K. The Influence of Entrance Geometry of Curcular Reflectors on Shock Wave Focusing[J]. Computers and Fluids, 1998, 27: 611-618.
[28] Izumi K, Aso S, Nishida M. Experimental and Computational Studies Focusing Process of Shock Waves Reflected from Parabolic Reflectors[J]. Shock Waves, 1994, 4(3): 213-222.
[29] Sod G A. A numerical Study of a Converging Cylindrical Shock[J]. Journal of Fluid Mechanics, 1977, 73: 651-671.
[30] Zonglin Jiang, Kazuyoshi Takayama. Reflection and Focusing of Toroidal Shock Waves from Coaxial Annular Shock Tubes[J]. Computers and Fluids, 1998, 27(5): 553-562.
[31] Teng H H, Jiang Z L. Numerical Investigation of Toroidal Shock Wave Focusing in a Cylindrical Chamber[J]. Shock Waves, 2005, 14(4): 299-305.
[32] 滕宏辉, 姜宗林. 环形激波和爆轰波会聚过程的气体动力学特性[J]. 中国科学 G 辑, 2006, 36(2): 189-198.
[33] Skews B W, Menon N, Bredin M, et al. An Experiment on Imploding Conical Shock Waves[J]. Shock Waves, 2002, 11(4): 323-326.
[34] Hosseini S H R, Takayama K. Study of Shock Wave Focusing and Reflection over Symmetrical Axis of a Compact Vertical Diaphragmless Shock Tube[J]. Proceedings of ISSW, 2001, 23(2): 1550-1557.
[35] Levin V A, Nechaev J N, Tarasov A I. A New Approach to Organizing Operation Cycles in Pulse Detonation Engines[C]. Moscow: High-Speed Deflagration and Detonation: Fundamentals and Control, 2001: 223-238.
[36] Achasov O V, Panyazkov O G. Some Gasdynamic Methods for Control of Detonation Initiation and Propagation [C]. Moscow: High-Speed Deflagration and Detonation: Fundamentals and Control, 2001: 31-44.
[37] 王春, 韩肇元, 司徒明. 激波聚焦引燃可燃气体的实验研究[J]. 推进技术, 2004, 25(2): 78-81.(WANG Chun, HAN Zhao-yuan, SITU Ming. Experimental Investigation on Ignition of Combustible Mixture by Shock Focusing[J]. Journal of Propulsion Technology, 2004, 25(2): 87-91.)
[38] 滕宏辉, 张德良, 李辉煌, 等. 用环形激波聚焦实现爆轰波直接起爆的数值模拟[J]. 爆炸与冲击, 2005, 25(6): 512-518.
[39] 陈二云, 赵改平, 杨爱玲. 环形激波聚焦流场特性的数值研究[J]. 爆炸与冲击, 2012, 32(3): 291-296.
[40] Murray S, Thibault P, Zhang F, et al. The Role of Energy Distribution on the Transmission of Detonation[C]. Moscow: Proceedings of the International Colloquium on Control of Detonation Processes, 2000: 139-162.
[41] Jackson S I, Shepherd J E. Toroidal Imploding Detonation Wave Initiator for Pulse Detonation Engines[J]. AIAA Journal, 2007, 45(1): 257-270.
[42] Jackson S, Grunthaner M, Shepherd J. Wave Implosion as an Initiation Mechanism for Pulse Detonation Engines[R]. AIAA 2003-4280.
[43] Jackson S. Gaseous Detonation Initiation via Wave Implosion[D]. California: California Institute of Technology, 2005.
[44] Jackson S, Shepherd J E. Initiation System for Pulse Detonation Engines[R]. AIAA 2002-3627.
[45] 秦亚欣, 高歌. 环形爆震波聚焦起爆数值模拟[J]. 航空动力学报, 2011, 26(5): 1037-1042.
[46] Leyva I A, Tangirala V, Dean A J. Investigation of Unsteady Flow Field in a 2-Stage PDE Resonator[R]. AIAA 2003-0715.
[47] Liang S M, Wu L N, Hsu R L. Numerical Investigation of Axisymmetric Shock Wave Focusing Over Paraboloidal Reflectors[J]. Shock Waves, 1999, 9(6): 367-379.
[48] Jackson S I, Shepherd J E. Detonation Initiation in a Tube via Imploding Toroidal Shock Waves[J]. AIAA Journal, 2008, 46(9): 2357-2367.
[49] Keith R, McManus, Dean A J. Experimental Evaluation of a Two-Stage Pulse Detonation Combustor[R].AIAA 2005-3773.
[50] 周鸿. 两步法高频爆震发动机(Two-stage PDE)机理与特性研究[D]. 南京:南京航空航天大学, 2008.
[51] 曾昊, 陈鑫, 何立明, 等. 凹面腔内二维激波会聚特性研究[J]. 空气动力学学报, 2013, 31(3): 316-320.
[52] 曾昊, 何立明, 荣康, 等. 凹面腔内的激波会聚冷态实验[J]. 航空动力学报, 2012, 27(12): 2655-2659.
[53] Choi H S, Baek J H. Computations of Nonlinear Wave Interaction in Shock Wave Focusing Process using Finite Volume TVD Schemes[J]. Computer and Fluids, 1996, 25(5): 509–525.
[54] Inoue O, Imuta S, Milton B E, et al. Computational Study of Shock Wave Focusing in a Log-Spiral Duct[J].Shock Waves, 1995, 5(3): 183–188.
[55] Milton B E. The Focusing of Shock Waves in Two-Dimensional and Axi-Symmetrical Ducts.In: Gr?nig H.(ed.) Shock tubes and waves[C]. Aachen: Proceedings of the 16th International Symposium on Shock Tubes and Waves, 1987.
[56] Liska R, Wendroff B. Comparison of Several Difference Schemes on 1D and 2D Test Problem for the Euler Equations[J]. SIAM Journal on Scientific Computing, 2003, 25(3): 995–1017.
[57] Chiping Li, Kailasanath K. Detonation Initiation by Annular-Jet-Induced Imploding Shocks[J]. Journal of Propulsion and Power, 2005, 21(1): 183-186.
[58] 邱彦杰, 武晓松. 两级脉冲爆震发动机数值模拟[D].南京:南京理工大学, 2011.
[59] 姜日红, 武晓松, 王栋. 共振型PDE谐振腔喷嘴匹配关系研究[J]. 航空动力学报, 2009, 24(5): 1006-1010.
[60] 唐敖. 可燃气体中激波聚焦的数值模拟[D]. 南京:南京理工大学, 2005.
[61] 归明月, 范宝春, 董刚, 等. 聚心火焰在凹面腔作用下引发爆轰的数值研究[J]. 高压物理学报, 2007, 21(2): 151-156.
[62] 李海鹏, 何立明, 曾昊, 等. 不同结构形式凹面腔内的激波聚焦起爆爆震波数值研究[C]. 河南焦作:第九届全国冲击动力学学术会议, 2009.
[63] 李海鹏, 何立明, 陈鑫, 等. 凹面腔内激波聚焦起爆爆震波过程的数值模拟[J]. 推进技术, 2010, 31(1): 87-91. (LI Hai-peng, HE Ling-ming, CHEN Xin, et al. Numerical Investigation of Detonation Initiation by Shock Wave Focusing over Parabolic Reflector[J]. Journal of Propulsion Technology, 2010, 31(1): 87-91.)
[64] 曾昊, 何立明, 章雄伟, 等. 环形射流喷口位置对激波聚焦起爆的影响分析[J]. 推进技术, 2011, 32(3): 437-442. (ZENG Hao, HE Li-ming, ZHANG Xiong-wei, et al. Investigation on the Influence of Jets Spout Location on Detonation Initiation via Imploding Annular Shock Waves[J]. Journal of Propulsion Technology, 2011, 32(3): 437-442.)
[65] 荣康, 何立明, 张建邦, 等. 喷口导流环结构对激波聚焦起爆的影响分析[J]. 推进技术, 2012, 33(2): 299-305. (RONG Kang, HE Li-ming, ZHANG Jian-bang, et al. Investigation on the Effects of Deflector Structure on Detonation Initiation by Shock Wave Focusing[J]. Journal of Propulsion Technology, 2012, 33(2): 299-305.)
[66] 张强, 何立明, 陈鑫, 等. 尾喷管对2-stage PDE性能影响的数值模拟[J]. 空军工程大学学报(自然科学版), 2011, 12(1): 10-14.
[67] 张强. 两级脉冲爆震发动机性能分析及数值模拟[D]. 西安:空军工程大学大学, 2010. * 收稿日期:2014-08-05;修订日期:2014-10-09。作者简介:何立明(1959—),男,博士,教授,研究领域为推进系统气动热力理论与工程。E-mail: heliming369@163.com(编辑:史亚红)
|