[1] 赵庆华, 刘建全, 王莉莉, 等. 固体燃料的超声速燃烧研究进展[J]. 飞航导弹, 2009, 10: 59-63.
[2] Adela Ben-Yakar, Ronald K Hanson. Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: an Overview[J]. Journal of Propulsion and Power, 2001, 17(4): 869-877.
[3] Witt M A. Investigation into the Feasibility of Using Solid Fuel Ramjets for High Supersonic/Low Hypersonic Tactical Missiles[D]. USA: Naval Postgradate School, 1989.
[4] Angus W J. An Investigation into the Performance Characteristics of a Solid Fuel Scramjet Propulsion Device[D]. USA: Naval Postgraduate School, 1989.
[5] Adela Ben-Yakar, Alon Gany. Experimental Study of a Solid Fuel Scramjet[R]. AIAA 94-2815.
[6] Abraham Cohen, Benveniste Natan. Experimental Investigation of a Supersonic Combustion Solid Fuel Ramjet[R]. AIAA 97-3237.
[7] Shimon Saraf, Alon Gany. Testing Metallized Solid Fuel Scramjet Combustor[R]. ISABE 2007-1176.
[8] 杨向明, 刘伟凯, 陈林泉, 等. 固体燃料超燃冲压发动机原理性试验研究[J]. 固体火箭技术, 2012, 35(3): 19-324.
[9] Jarymowycz T A, Yang V, Kuo K K. Numerical Study of Solid-Fuel Combustion under Supersonic Crossflows[J]. Journal of Propulsion and Power,1992,8(2): 346-353.
[10] Rachel Ben-Arosh, Benveniste Natan. Theoretical Study of a Solid Fuel Scramjet Combustor[J]. Acta Astronautica, 1999, 45(3): 155-166.
[11] 杨明, 孙波. 固体燃料超燃冲压发动机燃烧室的数值仿真[J]. 兵工自动化, 2012, 31(1): 37-41.
[12] 刘伟凯, 陈林泉, 杨向明. 固体燃料超燃冲压发动机燃烧室掺混燃烧数值研究[J]. 固体火箭技术, 2012, 35(4): 457-462.
[13] 杨明. 固体燃料超燃冲压发动机内流场研究[D].南京:南京理工大学, 2012.
[14] Xinyan Pei, Zhiwen Wu, Zhijun Wei, et al. Numerical Investigation on Cavity Length for Solid Fuel Scramjet[R]. AIAA 2012-3830.
[15] Huan Tao, Zhijun Wei. Numerical Investigation on the Effects of Cavity in Solid Fuel Scramjet[R]. AIAA 2013-3974.
[16] Biao Li, Zhi-jun Wei, Hong-wei Chi. Numerical Analysis of Solid Fuel Scramjet Operating at Mach 4 to 6[R].AIAA 2013-3695.
[17] 迟鸿伟, 魏志军, 王利和, 等. 固体燃料超燃冲压发动机燃烧室中PMMA自点火性能数值研究[J]. 推进技术, 2014, 35(6): 799-808. (CHI Hong-wei, WEI Zhi-jun, WANG Li-he, et al. Numerical Investigation on Self-Ignition of PMMA in Solid Fuel Scramjet[J]. Journal of Propulsion Technology, 2014, 35(6): 799-808.)
[18] Schulte G. Fuel Regression and Flame Stabilization Studies of Solid-Fuel Ramjets[J]. Journal of Propulsion and Power, 1986, 2(4): 301-304.
[19] Elands R. Experimental and Computational Flammability Limits in a Solid Fuel Ramjet[R]. AIAA 90-1964.
[20] Amnon Netzer, Alon Gany. Burning and Flameholding Characteristics of a Miniature Solid Fuel Ramjet Combustor[J]. Journal of Propulsion and Power,1991,7(3): 357-363.
[21] 迟鸿伟, 魏志军, 李彪, 等. 超声速流中湍流模型性能的数值研究[EB/OL]. Http://www.cnki.net/kcms/detail/61.1234.TJ.20140328.1634.005.html, 2014-03-28.
[22] Rihani D N, Doraiswamy LK. Estimation of Heat Capacity of Organic Compounds from Group Contributions[J]. Industial & Engineering Chemistry Fundamentals, 1965, 4(1): 17-21.
[23] Carl L Yaws. Handbook of Transport Property Data-VisCosity, Thermal Conductivity, and Diffusion Coefficients of Liquids and Gases[M]. USA: Library of Physica-Chemical Property Data, 1995.
[24] Walters R N, Hackett S M, Lyon R E. Heats of Combustion of High Temperature Polymers[J]. Fire and Materials, 2000, 24(5): 245-252.
[25] Berglund M, Fedina E, Fureby C, et al. Finite Rate Chemistry Large-Eddy Simulation of Self-Ignition in a Supersonic Combustion Ramjet[J].AIAA Journal, 2010,(3): 540-549.
[26] Seshadri K, Williams F A. Structure and Extinction of Counterflow Diffusion Flames above Condensed Fuels: Comparison Between Ploy(Methyl Methacrylate) and Its Liquid Monomer, Both Burning in Nitrogen-Air Mixtures[J]. Journal of Polymer Science: Ploymer Chemistry Edition, 1978, 16: 1755-1778.
[27] Magnussen B F, Hjertager B H. On Mathematical Models of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion[R]. In 16th Symp.(Int'l.) on Combustion.The Combustion Institute, 1976.
[28] Tzung-Hang Tsai, Mao-Jeng Li, I-You Shih, et al. Experimental and Numerical Study of Auto-Ignition and Pilot Ignition of PMMA Plates in a Cone Calorimeter[J]. Combustion and Flame, 2001, 124(3): 466-480.
[29] Elands R, Dijkstra F, Zandbergen B. Experimental and Computational Flammability Limits in a Solid Fuel Ramjet[R]. AIAA 90-1964.
[30] Gokulakrishnan P, Pal S, Klassen M S, et al. Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames Using Ethylene Reduced Kinetic Mechanism[R]. AIAA 2006-5092. * 收稿日期:2014-06-23;修订日期:2014-09-02。基金项目:国家自然科学基金(51276020)。作者简介:迟鸿伟(1986—),男,博士生,研究领域为固体燃料超燃冲压发动机内流场。E-mail: zblchw@163.com(编辑:史亚红)
|