[1] Bera K, Farouk B, Vitello P. Inductively Coupled Radio Frequency Methane Plasma Simulation[J]. Journal of Physics D: Applied Physics, 2001, 34(10): 1479-1481.
[2] Bera K, Farouk B, Lee Y H. Effects of Design and Operating Variables on Process Characteristics in a Methane Discharge: a Numerical Study[J]. Plasma Sources Science and Technology, 2001, 10(2): 211-214.
[3] Meezan N B, Hargus W A, Cappelli M A. Anomalous Electron Mobility in a Coaxial Hall Discharge Plasma[J]. Physical Review E, 2001, 63.
[4] Hagelaar G J M, Pitchford L C. Solving the Boltzmann Equation to Obtain Electron Transport Coefficients and Rate Coefficients for Fluid Models[J]. Plasma Sources Science and Technology, 2005, 14: 722-733.
[5] Flitti A, Pancheshnyi S. Gas Heating in Fast Pulsed Discharges in N2-O2 Mixtures[J]. The European Physical Journal Applied Physics, 2009, 45(2): 21001-21008.
[6] Campbell C S, Egolfopoulos F N. Kinetics Paths to Radical-Induced Ignition of Methane/Air Mixtures[J]. Combustion Science and Technology, 2005, 177(12): 2275-2298.
[7] Wang T, Gao X D, Li W. Characterization of the Plasma Density with Two Artificial Neural Network Models[J]. Chinese Physics B, 2010, 19(7).
[8] 杜宏亮, 何立明, 兰宇丹, 等. 约化场强对氮-氧混合气放电等离子体演化特性的影响[J]. 物理学报,2011, 60(11).
[9] Yu J L, He L M, Ding W, et al. Impacts of Air Pressure on the Evolution of Nanosecond Pulse Discharge Products[J]. Chinese Physics B, 2013, 22(5).
[10] 于锦禄, 何立明, 丁未, 等. 瞬态等离子体点火和火花塞过程的对比研究[J]. 推进技术, 2013, 34(11): 1575-1579. (YU Jin-lu, HE Li-ming, DING Wei, et al. Comparative Investigation on Detonation Initiation Process of Transient Plasma Ignition and Spark Ignition[J]. Journal of Propulsion Technology, 2013, 34(11): 1575-1579.)
[11] 郑殿峰, 张义宁, 郑日恒, 等. 交流驱动低温等离子体点火触发爆震可行性研究[J]. 推进技术, 2014, 35(8): 1146-1152. (ZHENG Dian-feng, ZHANG Yi-ning, ZHENG Ri-heng, et al. Investigation on Feasibility of Ignition and Detonation Trigger by Low Temperature Plasma Based on AC Drive[J]. Journal of Propulsion Technology, 2014, 35(8): 1146-1152.)
[12] 李勇, 沈怀荣. 非平衡等离子体对甲烷点火和火焰传播影响的机理分析[J]. 推进技术, 2013, 34(11): 1530-1536. (LI Yong, SHEN Huai-rong. Mechanism Analysis of Non-Equilibrium Plasma Effects on Ignition and Flame Propagation of Methane/Air Mixture[J]. Journal of Propulsion Technology, 2013, 34(11): 1530-1536.)
[13] Seery D J, Bowman C T. An Experimental and Analytical Study of Methane Oxidation Behind Shock Waves[J]. Combustion and Flame, 1970, 14(1): 37-47.
[14] Vries J D, Hall J M, Simmons S L, et al. Ethane Ignition and Oxidation Behind Reflected Shock Wave[J].Combustion and Flame, 2007, 150(2): 137-150.
[15] 张鹏. 等离子体强化甲烷点火过程的研究[D]. 北京: 装备学院, 2012.
[16] 廖钦. 煤油及其裂解产物自点火现象的初步试验研究[D]. 合肥:中国科学技术大学, 2009.
[17] Rotavera B, Petersen E L. Model Predictions of Higher-Order Normal Alkane Ignition from Dilute Shock-Tube Experiments[J]. Shock Tube, 2013, 23(4): 345-359. * 收稿日期:2015-05-19;修订日期:2015-05-22。基金项目:国家自然科学基金项目(11372356)。作者简介:沈双晏(1987—), 男,博士生,研究领域为等离子体助燃研究。E-mail: ssy_fly@163.comFig.1 Processes of plasma enhanced methane ignition(编辑:史亚红)
|