[1] Claude R Phipps, James R Luke, Lippert T, et al. Micropropulsion Using Laser Ablation[J]. Applied Physics A, 2004, 79: 1385-1389.
[2] 金星, 洪延姬, 李修乾. cm级空间碎片的激光清除过程分析[J]. 强激光与粒子束, 2012, 24(2): 281-284.
[3] 常浩, 金星, 洪延姬. 地基激光清除空间碎片过程建模与仿真[J]. 航空学报, 2012, 33(6): 994-1001.
[4] Marla D, Bhandarkar U V, Joshi S S. Critical Assessment of the Issues in the Modeling of Ablation and Plasma Expansion Processes in the Pulsed Laser Deposition of Metals[J]. Journal of Applied Physics, 2011, 109(2).
[5] Stafe M. Theoretical Photo-Thermo-Hydrodynamic Approach to the Laser Ablation of Metals[J]. Journal of Applied Physics, 2012, 112(12).
[6] Chen Z, Bogaerts A. Laser Ablation of Cu and Plume Expansion into 1 atm Ambient Gas[J]. Journal of Applied Physics, 2005, 97(6).
[7] S H Tavassoli, M Khalaji. Laser Ablation of Preheated Copper Samples[J]. Journal of Applied Physics, 2008, 103(8).
[8] Aghaei M, Mehrabian S, Tavassoli S H. Simulation of Nanosecond Pulsed Laser Ablation of Copper Samples: A Focus on Laser Induced Plasma Radiation[J]. Journal of Applied Physics, 2008, 104(5).
[9] Phipps C R, Birkan M, Bohn W L, et al. Review: Laser-Ablation Propulsion[J]. Journal of Propulsion and Power, 2010, 26(4): 609-637.
[10] Benxin Wu, Yung C Shin. Absorption Coefficient of Aluminum Near the Critical Point and the Consequences on High-Power Nanosecond Laser Ablation[J]. Applied Physics Letter, 2006, 89(11).
[11] Brandt R, Neuer G. Electrical Resistivity and Thermal Conductivity of Pure Aluminum and Aluminum Alloys Up to and Above the Melting Temperature[J]. International Journal of Thermophysics, 2007, 28(5): 1429-1446.
[12] N Pierron, P Sallamand, S Mattei. Study of Magnesium and Aluminum Alloys Absorption Coefficient During Nd: YAG Laser Interaction[J]. Applied Surface Science, 2007, 253(6): 3208-3214.
[13] 常浩, 金星, 叶继飞, 等. 激光功率密度对纳秒激光烧蚀冲量耦合影响的数值模拟[J]. 推进技术,2013, 34(10): 1426-1431. (CHANG Hao, JIN Xing, YE Ji-fei, et al. Numerical Simulation of Laser Power Density Effect on Nanosecond Laser Ablation Impulse Coupling[J]. Journal of Propulsion Technology, 2013, 34(10): 1426-1431. )
[14] Kundrapu M, Keidar M. Laser Ablation of Metallic Targets with High Fluences: Self-Consistent Approach[J]. Journal of Applied Physics, 2009, 105(8): 083302.
[15] Rozman R, Grabec I, Govekar E. Influence of Absorption Mechanisms on Laser-Induced Plasma Plume[J]. Applied Surface Science, 2008, 254(11): 3295-3305.
[16] Wu B X, Shin Y C. Modeling of Nanosecond Laser Ablation with Vapor Plasma Formation[J]. Journal of Applied Physics, 2006, 99(8): 084310.
[17] 常浩, 金星, 陈朝阳. 纳秒激光烧蚀铝冲量耦合数值模拟[J]. 物理学报, 2013, 62(19): 195203.
[18] Cristoforetti G, Legnaioli S, Palleschi V, et al. Observation of Different Mass Removal Regimes During the Laser Ablation of an Aluminum Target in Air[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(11): 1518-1528.
[19] Hussein A E, Diwakar P K, Harilal S S, et al. The Role of Laser Wavelength on Plasma Generation and Expansion of Ablation Plumes in Air[J]. Journal of Applied Physics, 2013, 113(14).(编辑:朱立影) * 收稿日期:2015-06-09;修订日期:2015-08-20。基金项目:国家自然科学基金项目(11102234;11502301)。作者简介:常浩(1987—), 男,博士,助理研究员,研究领域为激光与物质相互作用。E-mail: changhao5976911@163.com通讯作者:周伟静(1982—), 女,博士,助理研究员,研究领域为激光与物质相互作用。E-mail: viviazhouyy@163.com
|