[1] 范周琴. 超声速湍流燃烧火焰面模型判别建模及应用研究[D]. 长沙:国防科学技术大学, 2011.
[2] Gerlinger P. Investigation of an Assumed PDF Approach for Finite-Rate Chemistry[R]. AIAA 2002-0166.
[3] Cao R, Pope S B. Numerical Integration of Stochastic Differential Equations: Weak Second-Order Mid-Point Scheme for Application in the Composition PDF Method [J]. Journal of Computational Physics, 2003, 185(1): 194-212.
[4] Peters N. Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion[J]. Progress in Energy and Combustion Science, 1984, 10(3): 319-339.
[5] Pierce C D. Progress-Variable Approach for Large-Eddy Simulation of Turbulent Combustion[D]. Stanford: Stanford University, 2001.
[6] Pierce C D, Moin P. Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97.
[7] Ihme M, Pitsch H. Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames Using a Flamelet/Progress Variable Model 2. Application in LES of Sandia Flames D and E[J]. Combustion and Flame, 2008, 115: 90-107.
[8] Law C K. Combustion Physics[M]. New York: Cambridge University Press, 2006.
[9] Sabel’nikov V, Deshaies B, Da Silva L F F. Revisited Flamelet Model for Nonpremixed Combustion in Supersonic Turbulent Flows[J]. Combustion and Flame, 1998, 114(3-4): 577-584.
[10] Ladeinde F. A Critical Review of Scramjet Combustion Simulation[R]. AIAA 2009-0127.
[11] Oevermann M. Numerical Investigation of Turbulent Hydrogen Combustion in a Scramjet Using Flamelet Modeling[J]. Aerospace Science and Technology, 2000, 4(7): 463-480.
[12] Shur M L, Spalart P R, Strelets M K, et al. A Hybrid RANS-LES Approach with Delayed-DES and Wall-Modelled LES Capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649.
[13] Menter F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 32(8): 1598-1605.
[14] 韩省思. 超声速燃烧中湍流模型的研究[D]. 合肥:中国科学技术大学, 2009.
[15] Kazolea M, Delis A I, Nikolos I K, et al. An Unstructured Finite Volume Numerical Scheme for Extended 2D Boussinesq-Type Equations[J]. Coastal Engineering, 2012, 69: 42–66.
[16] Liou M S. Ten Years in the Making-AUSM-Family[R].AIAA 2001-2521.
[17] Terrapon V E, Ham F, Pecnik R, et al. A Flamelet-Based Model for Supersonic Combustion[R]. NASA Center for Turbulence Research,Annual Research Briefs, 2009.
[18] Ihme M, See Y C. Prediction of Autoignition in a Lifted Methane/Air Flame Using an Unsteady Flamelet/Progress Variable Model[J]. Combustion and Flame, 2010, 157(10): 1850-1862.
[19] 杨阳, 邢建文, 乐嘉陵, 等. 湍流燃烧模型对氢燃料超燃室流场模拟的影响[J]. 航空动力学报, 2008, 23(4): 605-610.
[20] Choi J Y, Jeung I S, Yoon Y. Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part 1: Validation[J]. AIAA Journal, 2000, 38(7): 1179-1187.(编辑:张荣莉) 收稿日期:2014-02-24;修订日期:2014-03-26。作者简介:王浩苏(1988—),男,博士生,研究领域为超声速燃烧数值模拟。E-mail: wanghaosu.max@gmail.com
|