[1] Grossman K R, Cybyk B Z, VanWie D M, et al. SparkJet Actuators for Flow Control[R]. AIAA 2003-0057.
[2] Grossman K R, Cybyk B Z, Rigling M C, et al. Characterization of SparkJet Actuators for Flow Control[R]. AIAA 2004-0089.
[3] Cybyk B Z, Simon D H, Land III H B. Experimental Characterization of a Supersonic Flow Control Actuator[R]. AIAA 2006-0478.
[4] Haack Sarah J, Bruce Land H, Bohdan Cybyk, et al. Characterization of a High-Speed Flow Control Actuator Using Digital Speckle Tomography and PIV[R]. AIAA 2008-3759.
[5] Haack S J, Taylor T M, Cybyk B Z, et al. Experimental Estimation of SparkJet Efficiency[R]. AIAA 2011-3997.
[6] Popki S H,Cybyk B Z,Land III H B,et al.Recent Performance-Based Advances in SparkJet Actuator Design for Supersonic Flow Applications[R].AIAA 2013-0322.
[7] Emerick II T M, Ali M Y, Foster C H, et al. SparkJet Actuator Characterization in Supersonic Crossflow[R]. AIAA 2012-2814.
[8] Narayanaswamy V, Shin J, Clemens N T, et al. Investigation of Plasma-Generated Jets for Supersonic Flow Control[R]. AIAA 2008-0285.
[9] Narayanaswamy V, Clemens N T, Raja L L. Investigation of a Pulsed-Plasma Jet for Shock/Boundary Layer Control[R]. AIAA 2010-1089.
[10] Greene B R, Clemens N T, Micka D. Control of Shock Boundary Layer Interaction Using Pulsed Plasma Jets[R]. AIAA 2013-0405.
[11] Anderson K, Knight D D. Characterization of Single Pulse of Plasma Jet[R]. AIAA 2012-0188.
[12] Golbabaei-Asl M, Knight D, Anderson K, et al. SparkJet Efficiency[R]. AIAA 2013-0928.
[13] Reedy T M, Kale N V, Craig Dutton J, et al. Experimental Characterization of a Pulsed Plasma Jet[R]. AIAA 2012-0904.
[14] Ostman R J, Herges T G, Craig Dutton J, et al. Effect on High-Speed Boundary-Layer Characteristics from Plasma Actuators[R]. AIAA 2013-0527.
[15] Caruana D, Barricau P, Hardy P, et al. The "Plasma Synthetic Jet" Actuator Aero-Thermodynamic Characterization and First Flow Control Applications[R]. AIAA 2009-1307.
[16] Hardy P, Barricau P, Belinger A, et al. Plasma Synthetic Jet for Flow Control[R]. AIAA 2010-5103.
[17] Belinger A, Hardy P, Barricau P, et al. Influence of the Energy Dissipation Rate in the Discharge of a Plasma Synthetic Jet Actuator[J]. Journal of Physics D: Applied Physics, 2011, 44(36).
[18] Shin J. Characteristics of High Speed Electro-Thermal Jet Activated by Pulsed DC Discharge[J]. Chinese Journal of Aeronautics, 2010, 23(5): 518-522.
[19] 单勇, 张靖周, 谭晓茗. 火花型合成射流激励器流动特性及其激励参数数值研究[J]. 航空动力学报, 2011, 26(03): 551-557.
[20] 朱晨彧. 高性能零质量射流激励器试验研究与参数优选[D]. 南京:南京航空航天大学, 2012.
[21] 贾敏, 梁华, 宋慧敏, 等. 纳秒脉冲等离子体合成射流的气动激励特性[J]. 高电压技术, 2011, 37(06): 1493-1498.
[22] 刘朋冲, 李军, 贾敏, 等. 等离子体合成射流激励器的流场特性分析[J]. 空军工程大学学报(自然科学版), 2011, 12(06): 22-25.
[23] Jin Di, Li Yinghong, Jia Min, et al. Experimental Characterization of the Plasma Synthetic Jet Actuator[J]. Plasma Science and Technology, 2013, 15(10).
[24] 罗振兵, 王林, 夏智勋, 等. 动压式高能合成射流激励器[P].中国专利: ZL201010502479.0, 2012-06-27.
[25] 王林, 罗振兵, 夏智勋, 等. 高速流场主动流动控制激励器研究进展[J]. 中国科学:技术科学, 2012, 42(10): 1103-1119.
[26] 王林, 罗振兵, 夏智勋, 等. 一种快响应直接力产生装置[P]. 中国专利: CN 102943751A, 2013-02-27.
[27] 王林, 罗振兵, 夏智勋, 等. 等离子体合成射流能量效率及工作特性研究[J]. 物理学报, 2013, 62(12): 125207.
[28] Wang Lin, Xia Zhixun, Luo Zhenbing, et al. Three-Electrode Plasma Synthetic Jet Actuator for High-Speed Flow Control[J]. AIAA Journal, 2014: 52(4): 879-882.
[29] 林麒, 刘汝兵, 牛中国, 等. 一种射流发生器[P]. 中国专利: CN 103143462A, 2013-06-12.(编辑:张荣莉) * 收稿日期:2014-01-26;修订日期:2014-03-31。基金项目:福建省自然科学基金(2010J01014)。作者简介:刘汝兵(1984—),男,博士生,研究领域为等离子体特性及其应用。E-mail: lrb@sa.buaa.edu.cn通讯作者:林麒(1954—),女,博士,教授,研究领域为航空工程。E-mail: qilin@xmu.edu.cn
|