[1] Ahedo E, Escobar D. Influence of Design and Operation Parameters on Hall Thruster Performances[J]. Journal of Applied Physics, 2004, 96 (2):983-992.
[2] Keidar M, Boyd I D, Beilis I I. Plasma Flow and Plasma-Wall Transition in Hall Thruster Channel [J]. Physics of Plasmas, 2001, 8(12): 5315-5322.
[3] Hamaguchi S, Dalvie M, Farouki R T, et al. A Shock-Tracking Algorithm for Surface Evolution under Reactive-ion Etching[J]. Journal of Applied Physics, 1993, 74(8):5172-5184.
[4] Carter G. Huygen’s Wavelets and Deterministic Evolution of Surfaces and Interfaces[J]. Vacuum, 1997, 48:924-931.
[5] Katardjiev V, Carter G, Nobes M J, et al. Three-Dimensional Simulation of Surface Evolution during Growth and Erosion[J]. Journal of Vacuum Science and Technology, A, 1994, 12:61-69.
[6] Yang T, Zhiyuan Z. Hall Thruster Lifetime Prediction and Operational Parameter Analysis Based on Hybrid-Method[J]. Journal of Propulsion Technology, 2013, 34(7):1002-1008
[7] Claus C, Day M, Kim V, et al. Preliminary Study of Possibility to Ensure Large Enough Lifetime of SPT Operating under Increased Powers[R]. AIAA 97-2789,
[8] Roy S, Pandey B. Development of a Finite Element Based Hall Thruster Model for Sputter Yield Prediction[R]. IEPC-2001-49.
[9] Sankovic J M, Hamley J A, Haag T W. Performance Evaluation of the Russia SPT-100 Thruster at NASA-LeRC[R]. IEPC-93-094.
[10] Manzella D, Sarmiento C, Sankovic J, et al. Performance Evaluation of the SPT-140[R]. IEPC-97-059.
[11] Carner C E, Brophy J R, Polk J E, et al. Cyclic Endurance Test of a SPT-100 Stationary Plasma Thruster[R]. AIAA 94-2856.
[12] Carner C E, Brophy J R, Polk J E, et al. A 5730-Hr Cyclic Endurance Test of the SPT-100[R]. AIAA 95-2667.
[13] Garner C E, Grophy J R, Polk J E, et al. Performance Evaluation and Life Testing of the SPT-100[R]. AIAA 94-2856.
[14] Absalamov S K. Measurement of Plasma Parameters in the Stationary Plasma Thruster (SPT-100) Plume and Its Effect on Spacecraft Components[R]. AIAA 92-3156.
[15] Hargus W A, Joshua Jr S. Optical Boron Nitride Insulator Erosion Characterization of a 200W Xenon Hall Thruster[R]. AIAA 2005-3529.
[16] Evgeny N, Dyshlyuk O. A. Spectroscopic Investigation of a Hall Thruster Ceramic Acceleration Channel Erosion Rate[R]. AIAA 2006-4660.
[17] Daren Y, Jie L, Hui L, et al. Experimental Study on the Effects of Magnetic Field Topography near Channel Exit on Plume Divergence of Hall Thrusters[J]. Plasma Science Technology, 2009, 11(6): 714-720.
[18] Daren Y, Yuquan L. Volumetric Erosion Rate Reduction of Hall Thruster Channel Wall During Ion Sputtering Process [J]. Journal of Physics D-Applied Physics, 2007, 40(8): 2526-2532.
[19] Mason L S, Jankovsky R S. 1000 Hours of Testing on a 10 Kilowatt Hall Effect Thruster[R]. AIAA 2001-3773.
[20] Yamamura Y. An Empirial Formula for Angular Dependence of Sputtering Yields[J]. Radiation Effects,1984, 80:57-72.(编辑:史亚红) * 收稿日期:2014-04-28;修订日期:2014-06-18。基金项目:高等学校博士学科点专项科研基金资助(20122302110048)。 作者简介:丁永杰(1979—),男,博士,讲师,研究领域为电推进技术。E-mail:dingyongjie@hit.edu.cn
|