[1] Yang V. Modeling of Supercritical Vaporization, Mixing, and Combustion Processes in Liquid-Fueled Propulsion Systems [J]. Proceedings of Combustion Institute, 2000, 28: 925-942.
[2] Sun T F, Schouten J A, Trappeniers N J, et al. Measurements of the Densities of Liquid Benzene, Cyclohexane, Methanol, and Ethanol as Functions of Temperature at 0.1MPa [J]. The Journal of Chemical Thermodynamics, 1988, 20(9): 1089-1096.
[3] Jimmy S L, Dillow A K, Eckert C A. Density Measurements of Binary Supercritical Fluid Ethane/Cosolvent Mixtures [J]. Journal of Chemical and Engineering Data,1996, 41(4): 791-793.
[4] Dai H J, Simonson J M, Cochran H D. Density Measurements of Styrene Solutions in Supercritical CO2 [J]. Journal of Chemical and Engineering Data, 2001, 46(6): 1571-1573.
[5] Dai H J, Heath K D, Cochran H D, et al. Density Measurements of 2-Propanol Solutions in Supercritical CO2[J]. Journal of Chemical and Engineering Data, 2001, 46(4): 873-874.
[6] Brandt L, Elizalde O, Luis A, et al. Solubility and Density Measurements of Palmitic Acid in Supercritical Carbon Dioxide + Alcohol Mixtures[J]. Fluid Phase Equilibria, 2010, 289(1): 72-79.
[7] Mantovani M, Chiesaa P, Valentia G, et al. Supercritical Pressure-Density-Temperature Measurements on CO2-N2, CO2-O2 and CO2-Ar Binary Mixtures [J]. The Journal of Supercritical Fluids, 2012, 61(1):34-43.
[8] 于忠.超临界酸性天然气密度粘度变化规律实验研究[D]. 青岛: 中国石油大学(华东), 2011.
[9] 范学军, 俞刚. 大庆RP-3航空煤油的热物性分析[J].推进技术, 2006, 27(2): 187-194.(FAN Xue-jun, YU Gang. Analysis of Thermophysical Properties of Daqing RP-3 Aviation Kerosene [J]. Journal of Propulsion Technology, 2006, 27(2): 187-194.)
[10] Deng H W, Zhang C B, Xu G Q, et al. Density Measurements of Endothermic Hydrocarbon Fuel at Sub- and Supercritical Conditions [J]. Journal of Chemical and Engineering Data, 2011, 56: 2980-2986.
[11] Li X F, Huai X L, Cai J, et al. Convective Heat Transfer Characteristics of China RP-3 Aviation Kerosene at Supercritical Pressure [J]. Applied Thermal Engineering, 2011, 31: 2360-2366.
[12] Deng H W, Zhu K, Xu G Q, et al. Heat Transfer Characteristics of RP-3 Kerosene at Supercritical Pressure in a Vertical Circular Tube [J]. Journal of Enhanced Heat Transfer, 2012, 19 (5): 409–421.
[13] 江晨曦, 仲峰泉, 范学军, 等. 超临界压力下航空煤油流动与传热特性试验 [J]. 推进技术, 2010, 31(2): 230-234.(JIANG Chen-xi, ZHONG Feng-quan, FAN Xue-jun, et al. Experiment on Convective Heat Transfer of Aviation Kerosene under Supercritical Pressures [J]. Journal of Propulsion Technology, 2010, 31(2): 230-234.)
[14] 李中洲, 朱惠人. 超临界压力下航空煤油传热特性 [J]. 推进技术, 2011, 32(2): 261-265.(LI Zhong-zhou, ZHU Hui-ren. Heat Transfer Characteristics of Kerosene in Micro-Channel Under Supercritical Pressure [J]. Journal of Propulsion Technology, 2011, 32(2): 261-265.)
[15] 李勋锋, 仲峰泉, 范学军, 等. 超临界压力下航空煤油圆管流动和传热的数值研究 [J]. 推进技术,2010, 31(4): 467-472.(LI Xun-feng, Zhong Feng-quan, Fan Xue-jun, et al. Numerical Study of Convective Heat Transfer of Aviation Kerosene Flows in Pipe at Supercritical Pressure [J]. Journal of Propulsion Technology, 2010, 31(4): 467-472.)
[16] Deng H W, Zhang C B, Xu G Q, et al. Viscosity Measurements of Endothermic Hydrocarbon Fuel from (298 to 788) K Under Supercritical Pressure Conditions [J]. Journal of Chemical and Engineering Data, 2012, 57: 358-365.
[17] National Institute of Standards and Technology (NIST) Chemistry WebBook[EB10L].http://webbook.nist.gov/.
[18] Soave G. Equilibrium Constants from a Modified Redlich-Kwong Equation of State [J].Chemical Engineering Science, 1972, 27(6): 1197-1203.
[19] Peng D, Robinson D. A New Two-Constant Equation of State [J]. Industrial and Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.
[20] Starling K E. Fluid Thermodynamic Properties for Light Petroleum Systems [C]. Houston: Gulf Publishing Co, 1973.
[21] 童景山. 流体热物性学:基本理论与计算 [M]. 北京:中国石化出版社, 2008.(编辑:史亚红) * 收稿日期:2014-04-25;修订日期:2014-06-10。基金项目:国家自然科学基金(91441201;51376151;51176158);教育部博士点基金(20126102110029)。作者简介:靳乐(1987—),男,硕士生,研究领域为发动机燃烧与流动。E-mail:jinle.xi@163.com 通讯作者:范玮(1966—),女,教授,研究领域为脉冲爆震发动机技术。E-mail:weifan419@nwpu.edu.cn
|