[1] Yezzi C A, Moore B B. Characterization of Kevlar/EPDM Rubbers for Use as Rocket Motor Case Insulators[R].AIAA 86-1489.
[2] 刘洋, 李江, 杨飒. 过载条件下三元乙丙绝热材料烧蚀机理和模型研究(I): 烧蚀机理分析[J]. 固体火箭技术, 2011, (2): 229-233.
[3] 王娟, 李江, 刘洋, 等. 模拟过载条件下EPDM绝热层烧蚀实验[J]. 推进技术, 2010, 31(5): 618-622. (WANG Juan, LI Jiang, LIU Yang, et al. Experiment on Ablation of EPDM Insulator Simulating Overload Condition[J]. Journal of Propulsion Technology, 2010, 31(5): 618-622.)
[4] 刘洋, 吴育飞, 李江, 等. 长时间小过载条件下发动机流场特征及绝热层烧蚀分析[J]. 推进技术, 2013, 34(8): 1071-1076. (LIU Yang, WU Yu-fei, LI Jiang, et al. Flow Field and Ablation Mode Analysis of Insulator under Low Acceleration with Long Operation Time Conditions for Solid Rocket Motor[J]. Journal of Propulsion Technology, 2013, 34(8): 1071-1076.)
[5] Harvey. Fiber-Reinforced Rocket Motor Insulation[P]. USA: USP, 6 691 505, 2004.
[6] 刘滢滢, 邢誉峰. 超弹性橡胶材料的改进Rivlin模型[J]. 固体力学学报, 2012, 33(4): 408-414.
[7] 何志刚, 董大鹏, 王国林, 等. 轮胎超弹性本构材料参数确定的影响因素分析[J]. 机械工程学报, 2008, 44(12): 296-302.
[8] Yeoh O H. Some Forms of the Strain Energy for Rubber[J]. Rubber Chemistry and Technology, 1993, 66(5): 754~771.
[9] Sherwood J A, Frost C C. Constitutive Modeling and Simulation of Energy Absorbing Polyurethane Foam[J]. Polymer Engineering and Science, 1992, 32(16): 1138-1146.
[10] 胡时胜, 刘剑飞, 王悟. 硬质聚氨酯泡沫塑料本构关系的研究[J]. 力学学报, 1998, 30(20): 151-155.
[11] 王嵩, 卢子兴. 聚氨酯复合泡沫塑料压缩本构关系[J]. 强度与环境, 2005, 32(4): 22-27.
[12] 饶聪超, 姜献峰, 李俊源, 等. 高密度聚乙烯结构发泡塑料拉伸本构关系的研究[J]. 中国塑料, 2012, 26(7): 66-69.
[13] 常武军, 鞠玉涛, 胡少青. HTPB 固化胶片的超弹性本构模型[J]. 推进技术, 2012, 33(5): 795-798. (CHANG Wu-jun, JU Yu-tao, HU Shao-qing. Research on Hyperelastic Constitutive Model for HTPB Crosslinked Specimen[J]. Journal of Propulsion Technology, 2012, 33(5): 795-798.)
[14] Song B, Chen W. One-Dimensional Dynamic Compressive Behavior of EPDM Rubber[J]. Journal of Engineering Materials and Technology, 2003, 125(3): 294-301.
[15] Li C, Lua J. A Hyper-Viscoelastic Constitutive Model for Polyurea[J]. Materials Letters, 2009, 63(11): 877-880.
[16] Zrida M. Experimental and Numerical Study of Polypropylene Behavior Using an Hyper-Visco-Hysteresis Constitutive Law[J]. Computational Materials Science, 2009, 45: 516-527.
[17] 王鹏飞, 徐松林, 胡时胜. 基于温度与应变率相互耦合的泡沫铝本构关系[J]. 高压物理学报, 2014, 28(1): 23-28.
[18] 阳建红, 俞茂宏, 候根良, 等. HTPB复合固体推进剂含损伤和老化本构研究[J]. 推进技术, 2002, 23(6): 509-512. (YANG Jian-hong, YU Mao-hong, HOU Gen-liang, et al. Research on the Constitutive Equations of HTPB Composite Solid Propellant with Damage and Aging[J]. Journal of Propulsion Technology, 2002, 23(6): 509-512.)
[19] 孟红磊, 赵秀超, 鞠玉涛, 等. 基于累积损伤的双基推进剂强度准则及实验[J]. 推进技术, 2011, 32(1): 109-113. (MENG Hong-lei, ZHAO Xiu-chao, JU Yu-tao, et al. Strength Criterion Based on Accumulative Damage for Double-Base Propellant and Experiment[J].Journal of Propulsion Technology, 2011, 32(1): 109-113.)(编辑:史亚红) * 收稿日期:2014-09-15;修订日期:2014-10-20。基金项目:总装重点预研项目 ( 20101019)作者简介:蒋晶(1990-),女,硕士生,研究领域为绝热层材料的力学特性。E-mail:jj12345j0@163.com
|