推进技术 ›› 2015, Vol. 36 ›› Issue (9): 1309-1316.

• 舰船推进 • 上一篇    下一篇

跨声速轴流压气机转子反问题优化方法

刘昭威 ,吴 虎,唐晓毅   

  1. 西北工业大学 动力与能源学院,陕西 西安 710072,西北工业大学 动力与能源学院,陕西 西安 710072,西北工业大学 动力与能源学院,陕西 西安 710072
  • 发布日期:2021-08-15
  • 作者简介:刘昭威(1986—),男,博士生,研究领域为叶轮机械气动热力学。
  • 基金资助:
    国家自然科学基金资助项目( 51076131)。

Optimization of Transonic Axial Compressor Rotor Using Improved Inverse Method

  1. School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China,School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China and School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
  • Published:2021-08-15

摘要: 为降低跨声速压气机叶片通道中的激波损失,提升跨声速压气机的气动性能,以三维粘性反问题设计方法理论为基础,发展了三维反问题设计方法,并对反问题所使用的边界条件进行了改进。在保持叶片总切向载荷不变的同时,通过调整叶片表面沿轴向的载荷分布,达到降低叶片通道内部的激波强度,减少激波损失的目的。为验证方法的正确性,文中运用NASA Rotor 67跨声速压气机转子实验数据与计算结果进行对比,在此基础上对叶片表面载荷进行分析,在修改叶片表面载荷分布后通过反问题设计方法得到新的叶片几何。结果表明,通过修改叶片表面载荷分布,运用反问题设计方法得到的新叶片,其激波强度明显降低,压气机转子出口流量提高了0.5%,效率提高了1.0%。

关键词: 反问题设计方法;激波损失控制;载荷分布;反问题边界条件

Abstract: In order to reduce the shock wave loss of blade passage and improve the aerodynamic performance of transonic compressor,a compressor inverse design program is developed based on the three-dimensional viscous inverse design method theories,and some improvements are made to the inverse method boundary condition. The blade total tangential load remain unchanged during the computational process,and the strength of shock wave in the blade passage is reduced by adjusting the blade surface pressure loading distribution in the axial direction. The NASA Rotor 67 experiment data is used to validate the calculation results. The blade geometry is redesigned by using the modified load distribution based on the inverse design program. The numerical research shows that shock wave strength is reduced and better performance of compressor rotor is achieved. The mass flow and adiabatic efficiency increased by 0.5% and 1.0%,which demonstrates the effectiveness of this method.

Key words: Inverse method;Shock wave loss control;Load distribution;Inverse boundary condition