[1] Lander H, Nixon A C. Endothermic Fuels for Hypersonic Vehicles[J]. Journal of Aircraft, 1971, 8(4): 200-207.?
[2] Nixon A C, Henderson H T. Thermal Stability of Endothermic Heat Sink Fuels[J]. Industrial & Engineering Chemistry Product Research and Development, 1966, 5(1): 87-92.
[3] 贺芳, 米镇涛, 孙海云. 提高烃类燃料热沉的研究进展[J]. 化学进展, 2006, 18(7): 1041-1048.
[4] Edwards T, Zabarnick S. Supercritical Fuel Deposition Mechanisms[J]. Industrial & Engineering Chemistry Research, 1993, 32(12): 3117-3122.
[5] Yu J, Eser S. Thermal Decomposition of C10-C14 Normal Alkanes in Near-Critical and Supercritical Regions: Product Distributions and Reaction Mechanisms[J]. Industrial & Engineering Chemistry Research, 1997, 36(3): 574-584.
[6] Yang V. Modeling of Supercritical Vaporization, Mixing, and Combustion Processes in Liquid-Fueled Propulsion Systems[J]. Proceedings of the Combustion Institute, 2000, 28(1): 925-942.
[7] 范学军, 俞刚. 大庆RP-3航空煤油热物性分析[J]. 推进技术, 2006, 27(2): 187-192. (FAN Xue Jun, YU Gang. Analysis of Thermophysical Properties of Daqing RP-3 Aviation Kerosene[J]. Journal of Propulsion?Technology, 2006, 27(2): 187-192.)
[8] 李中洲, 朱惠人. 超临界压力下航空煤油传热特性[J]. 推进技术, 2011, 32(2): 261-265. (LI Zhong Zhou, ZHU Hui Ren. Heat Transfer Characteristics of Kerosene in Micro-Channel under Supercritical Pressure[J]. Journal of Propulsion?Technology, 2011, 32(2): 261-265.)
[9] 李勋锋, 仲峰泉, 范学军, 等. 超临界压力下航空煤油圆管流动和传热的数值研究[J]. 推进技术, 2010, 31(4): 467-472. (LI Xun-feng, ZHONG Feng-quan, FAN Xue-jun, et al. Numerical Study of Convective Heat Transfer of Aviation Kerosene Flows in Pipe at Supercritical Pressure[J]. Journal of Propulsion?Technology, 2010, 31(4): 467-472.)
[10] Fedele L, Pernechele F, Bobbo S, et al. Compressed Liquid Density Measurements for 1,1,1,2,3,3,3-Heptafluoropropane (R227ea)[J]. Journal of Chemical & Engineering Data, 2007, 52(5): 1955-1959.
[11] 李楠, 吕俊芳. 利用放射性同位素γ射线测量飞机燃油密度的方法研究[J]. 航空学报, 2002, 23(6): 587-590.
[12] Deng H W, Zhang C B, Xu G Q, et al. Density Measurements of Endothermic Hydrocarbon Fuel at Sub-and Supercritical Conditions[J]. Journal of Chemical & Engineering Data, 2011, 56(6): 2980-2986.
[13] Singh R K, Singh S N, Seshadri V. Study on the Effect of Vertex Angle and Upstream Swirl on the Performance Characteristics of Cone Flowmeter Using CFD[J]. Flow Measurement and Instrumentation, 2009, 20(2): 69-74.
[14] Huang S F, Ma T Y, Wang D, et al. Study on Discharge Coefficient of Perforated Orifices as a New Kind of Flowmeter[J]. Experimental Thermal and Fluid Science, 2013, 46: 74-83.
[15] Liu T, Fu J Y, Wang K, et al. Gas-liquid Critical Properties of Ethylene+Benzene[J]. Journal of Chemical & Engineering Data, 2001, 46(4): 809-812.
[16] Goodwin R D. Benzene Thermophysical Properties from 279 to 900K at Pressures to 1000 Bar[J]. Journal of Physical and Chemical Reference Data, 1988, 17(4): 1541-1636.(编辑:史亚红) * 收稿日期:2014-07-10;修订日期:2014-09-10。基金项目:国家自然科学项目(20903067);四川大学优秀青年学者科研基金(2013SCU04A05);教育部新世纪优秀人才支持计划(NCET-13-0398)。作者简介:文旭(1989—),男,硕士生,研究领域为燃料热物性测量。E-mail: qzhu@scu.edu.cn通讯作者:朱权(1980—),男,副教授,研究领域为燃烧化学。E-mail: qzhu@scu.edu.cn
|