[1] Natan B, Rahimi S. The Status of Gel Propellants in Year 2000[J]. International Journal of Energetic Materials and Chemical Propulsion, 2002, 5(1-6): 172-192.
[2] 王宁飞, 莫红军, 樊学忠. 凝胶推进剂的发展及应用[J]. 含能材料, 1998, 6(3): 139-143.
[3] Baek G, Kim S, Han J, et al. Atomization Characteristics of Impinging Jets of Gel Material Containing Nanoparticles[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(21): 1272-1285.
[4] Fakhri S, Lee J G. Effect of Nozzle Geometry on the Atomization and Spray Characteristics of Gelled-Propellant Simulants Formed by Two Impinging Jets[J]. Atomization and Sprays, 2010, 12(20): 1033-1046.
[5] 张蒙正, 陈炜, 杨伟东, 等. 撞击式喷嘴凝胶推进剂雾化及表征[J]. 推进技术, 2009, 30(1): 46-50. (ZHANG Meng-zheng, CHEN Wei, YANG Wei-dong, et al. Atomization and Characteristics of Gelled Propellant with Impinging Injector[J]. Journal of Propulsion Technology, 2009, 30(1): 46-50.)
[6] Chojnacki K T. Atomization and Mixing of Impinging Non-Newtonian Jets[D]. Huntsville: University of Alabama-Huntsville, 1997.
[7] Mallory J A. Jet Impingement and Primary Atomization of Non-Newtonian Liquids[D]. West Lafayette: Purdue University, 2012.
[8] Fakhri S, Lee J G, Yetter R A. Atomization and Spray Characteristics of Gelled-Propellant Simulants Formed by Two Impinging Jets [R]. AIAA 2009-5241.
[9] Inoue C, Watanabe T, Himeno T. Study on Atomization Process of Liquid Sheet Formed by Impinging Jets[R].AIAA 2008-4847.
[10] Arienti M, Li X, Soteriou M C, et al. Coupled Level-Set/Volume-of-Fluid Method for the Simulation in Propulsion Device Injectors[R]. AIAA 2010-7136.
[11] Li X, Arienti M, Soteriou M C. Towards an Efficient, High-Fidelity Methodology for Liquid Jet Atomization Computations[R]. AIAA 2010-210.
[12] Ma D J, Chen X D, Khare P, et al. Atomization Patterns and Breakup Characteristics of Liquid Sheets Formed by Two Impinging Jets[R]. AIAA 2011-97.
[13] 强洪夫, 刘虎, 陈福振, 等. 基于SPH方法的射流撞击仿真[J]. 推进技术, 2012, 33(3): 424-429. (QIANG Hong-fu, LIU Hu, CHEN Fu-zhen, et al. Simulation on Jet Impingement Based on SPH Method[J]. Journal of Propulsion Technology, 2012, 33(3):424-429.)
[14] 强洪夫, 刘虎, 韩亚伟, 等. 基于SPH方法的凝胶推进剂一次雾化仿真研究[J]. 固体火箭技术, 2013, 36(1): 61-66.
[15] 刘谋斌, 宗智, 常建忠. 光滑粒子动力学方法的发展与应用[J]. 力学进展, 2011, 41(2): 217-234.
[16] Liu G R, Liu M B. 光滑粒子流体动力学-一种无网格粒子法[M]. 长沙:湖南大学出版社, 2005.
[17] Monaghan J J. Smoothed Particle Hydrodynamics[J]. Reports on Progress in Physics, 2005, 68(8): 1703-1759.
[18] Monaghan J J. SPH without a Tensile Instability[J].Journal of Computational Physics, 2000, 159(2): 290-311.
[19] Bonet J, Lok T S L. Variational and Momentum Preservation Aspects of Smooth Particle Hydrodynamic Formulations[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 180(1): 97-115.
[20] Basa M, Quinlan N J, Lastiwka M. Robustness and Accuracy of SPH Formulations for Viscous Flow[J]. International Journal for Numerical Methods in Fluids, 2009, 60(10): 1127-1148.
[21] Yawei H, Hongfu Q, Quanzhang H, et al. Improved Implicit SPH Method for Simulating Free Surface Flows of Power Law Fluids[J]. Science China-Technological Sciences, 2013, 56(10): 2480-2490.
[22] 陈福振. 含表面张力模型的SPH新方法及其应用[D]. 西安:第二炮兵工程学院, 2010.
[23] Metzner A B, Reed C J. Flow of Non-Newtonian Fluids–Correlation of the Laminar, Transition, and Turbulent-Flow Regions[J]. American Institute of Chemical Engineering Journal, 1955, 4(1): 189-204.
[24] Ramamurthi K, Nandakumar K, Patnaik R K. Characteristics of Sprays Formed by Impingement of a Pair of Liquid Jets[J]. International Journal of Propulsion and Power, 2004, 20(1): 76-82. * 收稿日期:2014-06-26;修订日期:2014-07-28。基金项目:国家自然科学基金(51276192);第二炮兵工程大学创新性探索研究资助(EPXY0806)。作者简介:刘虎(1987—),男,博士生,助教,研究领域为高性能数值模拟。 E-mail: richardliu1987@163.com
|