[1] Kantrowitz A. The Supersonic Axial-Flow Compressor [R]. NACA-Report 974, NACA-ACR-L6D02, 1946.
[2] Erwin J R, Wright L C, Kantrowitz A. Investigation of an Experimental Supersonic Axial-Flow Compressor [R]. NACA-RM-L6J01b, 1947.
[3] Ritter W K, Johnson I A. Performance of 24-inch Supersonic Axial-Flow Compressor in Air I: Performance of Compressor Rotor at Design Tip Speed of 1600 Feet Per Second[R]. NACA-RM-E7L10, 1948
[4] Ullman G N, Hartmann M J, Tysl E R. Experimental Investigation of a 16-inch Impulse-Type Supersonic Compressor Rotor[R]. NACA-RM-E51G19, 1951.
[5] Klapproth J F, Ullman G N, Tysl E R. Performance of an Impulse-Type Supersonic Compressor with Stators [R]. NACA-RM-52B22, 1952.
[6] Levine P. The Two Dimensional Inflow Conditions for a Supersonic Compressor with Curved Blades[R]. WADC TR 55-387, 1956.
[7] Levine P. Two-Dimensional Inflow Conditions for a Supersonic Compressor with Curved Blades[J]. Journal of Applied Mechanics, 1957, 24(2): 165-169.
[8] Lichtfuss H J, Starken H. Supersonic Cascade Flow [J]. Progress in Aerospace Science, 1974, 15: 37-149.
[9] Starken H, Zhong Yongxing, Schreiber H A. Mass Flow Limitations of Supersonic Blade Rows Due to Leading Edge Blockage[R]. ASME 84-GT-233.
[10] 程家纲. 超跨声速扩压叶栅未启动堵塞工况计算[J].力学学报, 1979, (4): 315-322.
[11] 邱名, 周正贵, 刘龙龙, 等. 超声压气机叶型设计方法[J]. 航空学报, 2013, 34: 1-12.
[12] Graham R C, Klapproth J F, Barina F J. Investigation of Off-Design Performance of Shock-in-Rotor Type Supersonic Blading[R]. NACA-RM-E51C22, 1951.
[13] Schreiber H A. Experimental Investigations on Shock Losses of Transonic and Supersonic Compressor Cascades[R]. AGARD-CP-401/AD-A183996, 1987.
[14] Schreiber H A, Starken H. An Investigation of a Strong Shock-Wave Turbulent Boundary Layer Interaction in a Supersonic Compressor Cascade[J]. Journal of Turbomachinery, 1992, 114(3): 494-503.
[15] Küsters B, Schreiber H A. Compressor Cascade Flow with Strong Shock-Wave/Boundary-Layer Interaction [J]. AIAA Journal, 1998, 36(11): 2072-2078.
[16] 刘龙龙, 周正贵, 邱名. 超音叶栅激波结构研究及叶型优化设计[J]. 推进技术, 2013, 34(8): 1050-1055. (LIU Long-long, ZHOU Zheng-gui, QIU Ming. Studies of Shock Structure in Supersonic Cascade and Profile Optimization Design[J]. Journal of Propulsion Technology, 2013, 34(8): 1050-1055.)
[17] 孙波, 张堃元. Busemann进气道起动问题初步研究[J]. 推进技术, 2006, 27(2): 128-131. (SUN Bo, ZHANG Kun-yuan. Preliminary Investigation on Busemann Inlet Starting Characteristics[J]. Journal of Propulsion Technology, 2006, 27(2): 128-131.)
[18] 袁化成, 梁德旺. 高超声速进气道再起动特性分析[J]. 推进技术, 2006, 27(5): 390-398. (YUAN Hua-cheng, LIANG De-wang. Analysis of Characteristics of Restart Performance for a Hypersonic Inlet[J]. Journal of Propulsion Technology, 2006, 27(5): 390-398.)
[19] 邱名. 高级压比轴流压气机转子通道内激波组织研究[D]. 南京:南京航空航天大学, 2014.
[20] Fleeter s, Holtman R L, Mcclure R B, et al. Experimental Investigation of a Supersonic Compressor Cascade[R]. ARL-75-0208, 1975.
[21] Tweedt D L, Schreiber H A, Starken H. Experimental Investigation of the Performance of a Supersonic Compressor Cascade[R]. NACA-TM-100879, 1988.
[22] Leonard O. Design Method for Subsonic and Transonic Cascade with Prescribed Mach Number Distribution[J]. Journal of Turbomachinery, 1992, 114(3): 553-559.
[23] 曹志鹏, 兰发祥, 夏天, 等. 高负荷风扇转子叶片反问题设计[J]. 燃气涡轮试验与研究, 2012, 25(2):1-6.
[24] 杜磊, 宁方飞. 低速叶型气动反问题设计方法[J]. 航空学报, 2011, 32(7): 1180-1187.
[25] Sanger N L. The Use of Optimization Techniques to Design Controlled Diffusion Compressor Balding[J]. ASME Journal Eng.Power, 1983, 105(2): 256-265.
[26] Oyama A, Liou M S. High-Fidelity Swept and Leaned Rotor Blade Design Optimization using Evolutionary Algorithm[R]. AIAA 2003-4091.
[27] Benini E, Toffolo A. For Axial Flow Compressors Using Evolutionary Computation[J]. Journal of Propulsion and Power, 2002, 18(3): 544-554.
[28] Benini E. Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor [J]. Journal of Propulsion and Power, 2004, 20(3): 559-565.
[29] 周正贵, 邱名, 徐夏, 等. 压气机/风扇二维叶型自动优化设计[J], 航空学报, 2011, 32(11): 1987-1997.
[30] 邱名, 周正贵. 优化方法在轴流压气机转子叶片气动设计中的应用[J]. 南京航空航天大学学报, 2013, 45(1): 75-81.
[31] Wennerstrom AJ, Frost GR. Design of a 1500ft/sec, Transonic, High-Through-Flow, Single-Stage Axial Flow Compressor with Low Hub/Tip Ratio[R]. AFAPL-TR-76-59/ADB-016386.
[32] Strazisar A J, Wood J R, Hathaway M D, et al. Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor [R]. NASA TP-2879, 1989.
[33] Lonnie Reid, Moore R D. Design and Overall Performance of Four Highly Loaded, High-Speed Inlet Stages for an Advanced, High-Pressure-Ratio Core Compressor[R]. NASA TP-1337, 1978.
[34] Neubert R J, Hobbs D E, Weingold H D. Application of Sweep to Improve the Efficiency of a Transonic Fan:Part I-Design[R]. AIAA 90-1915.
[35] Rabe D, Hoying D. Application of Sweep to Improve the Efficiency of a Transonic Fan: PartⅡ-Performance and Laser Test Result [R]. AIAA 91-2544.
[36] 陈懋章. 风扇/压气机技术发展和对今后工作的建议[J]. 航空动力学报, 2002, 17(1): 1-15. * 收稿日期:2015-05-31;修订日期:2015-08-10。基金项目:国家自然科学基金(11572339)。作者简介:邱名 ,男,博士,研究实习员,研究领域为叶轮机气体动力学。E-mail: qiu_ming_abc@163.com通讯作者:周正贵 ,男,博士,教授,博士生导师,研究领域为叶轮机气体动力学。E-mail: zzgon@nuaa.edu.cn(编辑:张荣莉)
|