[1] Swanson S R, Christensen L W. A Constitutive Formulation for High-Elongation Propellants[J]. Journal of Spacecraft, 1983, 20(6): 559-566.
[2] Francis E C, Thompson R E. Nonlinear Structural Modeling of Solid Propellants[R]. AIAA 84-1290.
[3] Ozupek S, Becker E B. Constitutive Modeling of High-Elongation Solid Propellants[J]. Journal of Engineering Mateiral and Technology, 1992, 114(1): 111-115.
[4] Gazonas G A. A Uniaxial Nonlinear Viscoelastic Constitutive Model with Damage for M30 Gun Propellant[J].Mechanics of Materials, 1993, 15(4): 323-335.
[5] Ozupek S, Becker E B. Constitutive Equations for Solid Propellants[J]. Journal of Engineering Materials and Technology, 1997, 119(2): 125-132.
[6] Park S W, Schapery R A. A Viscoelastic Constitutive Model for Particulate Composites with Growing Damage[J]. International Journal of Solids and Structures, 1997, 34(8): 931-947.
[7] Matous K, Inglis H M, Gu X F, et al. Multiscale Damage Modeling of Solid Propellants: Theory and Computational Framework[R]. AIAA 2005-4347.
[8] Matous K, Geubelle P H. Multiscale Modeling of Particle Debonding in Reinforced Elastomers Subjected to Finite Deformation[J]. International Journal for Numerical Methods in Engineering, 2006, 65: 190-223.
[9] 李高春, 邢耀国, 王玉峰, 等. 基于细观力学的复合固体推进剂模量预估方法[J]. 推进技术, 2007, 28(4): 441-444. (LI Gao-chun, XING Yao-guo, WANG Yu-feng, et al. A Micromechanical Method of the Effective Modulus Estimation for the Composite Propellant[J]. Journal of Propulsion Technology, 2007, 28(4): 441-444.)
[10] 李高春, 邢耀国, 戢治洪, 等. 复合固体推进剂细观界面脱粘有限元分析[J]. 复合材料学报, 2011, 28(3): 229-235.
[11] 刘承武, 阳建红, 陈飞. 改进的Mori-Tanaka法在复合推进剂非线界面脱粘中的应用[J]. 固体火箭技术, 2011, 34(1): 67-70.
[12] Needleman A. An Analysis of Decohesion Along an Imperfect Interface[J]. International Journal of Fracture, 1990, 42(1): 21-40.
[13] Xu X P, Needleman A. Void Nucleation by Inclusion Debonding in a Crystal Matrix[J]. Modelling and Simulation in Materials Science and Engineering, 1993, 1(2): 111-132.
[14] Park K, Paulino G H, Roesler J R. A Unified Potential-Based Cohesive Model of Mixed-Mide Fracture[J]. Journal of the Mechanics and Physics of Solids, 2009, 57: 891-908.
[15] Tan H, Liu C, Huang Y, et al. The Cohesive Law for the Particle/Matrix Interfaces in High Explosives[J]. Journal of the Mechanics and Physics of Solids, 2005, 53: 1892-1917.
[16] Tan H, Huang Y, Liu C, et al. The Uniaxial Tension of Particulate Composite Materials with Nonlinear Interface Debonding[J]. International Journal of Solids and Structures, 2007, 44: 1809-1822.
[17] Bazant Z P. Concrete Fracture Models: Testing and Practice[J]. Engineering Fracture Mechanics, 2002, 69(2): 165-205.
[18] Elices M, Guinea G V, Gomez J. The Cohesive Zone Model: Advantages, Limitations and Challenges[J]. Engineering Fracture Mechanics, 2002, 69(2): 137-163.
[19] Mohammed I, Liechti K M. Cohesive Zone Modeling of Crack Nucleation at Biomaterial Corners[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 735-764.
[20] 韦震, 鞠玉涛, 周清春, 等. 基于内聚力模型的铝/丁羟胶粘接界面力学研究[J]. 固体火箭技术, 2014, 37(2): 241-246.
[21] ZHI Shi-jun, SUN Bing, ZHANG Jian-wei. Multiscale Modeling of Heterogeneous Propellants from Particle Packing to Grain Failure Using a Surface-Based Cohesive Approach[J]. Acta Mechanica Sinica, 2012, 28(3): 746-759.
[22] 职世君, 孙冰, 张建伟. 基于表面粘结损伤的复合固体推进剂细观损伤数值模拟[J]. 推进技术, 2013, 34(2): 273-279. (ZHI Shi-jun, SUN Bing, ZHANG Jian-wei. Numerical Simulation of Solid Propellant Mesoscopic Damage Using Surfaced-Based Cohesive Approach[J]. Journal of Propulsion Technology, 2013, 34(2): 273-279.)(编辑:朱立影) * 收稿日期:2015-05-17;修订日期:2015-08-13。基金项目:国家自然科学基金(U1404106);“十二五”总装预研项目(51328050101); 国防科技大学科研计划资助项目(JC13-01-03)。作者简介:职世君,男,工程师,博士,研究领域为发动机仿真设计。E-mail: zhishijun@buaa.edu.cn
|