推进技术 ›› 2016, Vol. 37 ›› Issue (10): 1977-1983.

• 材料 推进剂 燃料 • 上一篇    下一篇

复合固体推进剂颗粒脱湿损伤参数反演

职世君1,曹付齐1,申志彬2,邢国强1,曹军伟1   

  1. 中国空空导弹研究院,河南 洛阳 471000,中国空空导弹研究院,河南 洛阳 471000,国防科技大学 航天科学与工程学院,湖南 长沙 410073,中国空空导弹研究院,河南 洛阳 471000,中国空空导弹研究院,河南 洛阳 471000
  • 发布日期:2021-08-15
  • 作者简介:职世君,男,工程师,博士,研究领域为发动机仿真设计。
  • 基金资助:
    国家自然科学基金(U1404106);“十二五”总装预研项目(51328050101);

Parameters Inversion of Particle Dewetting

  1. China Airborne Missile Academy,Luoyang 471000,China,China Airborne Missile Academy,Luoyang 471000,China,College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China,China Airborne Missile Academy,Luoyang 471000,China and China Airborne Missile Academy,Luoyang 471000,China
  • Published:2021-08-15

摘要: 为确定复合固体推进剂颗粒脱湿损伤参数,采用分子动力学方法建立了复合固体推进剂颗粒夹杂模型,根据Surface-based cohesive方法,在高氯酸铵(AP)颗粒与基体之间的界面处设置接触损伤,对复合固体推进剂的细观损伤过程进行数值仿真计算。将数值仿真得到的应力-应变曲线与试验曲线进行对比,建立颗粒脱湿损伤参数的优化目标函数,通过分步迭代计算,对颗粒脱湿损伤参数进行反演识别。结果表明:根据反演参数计算复合固体推进剂细观损伤过程,颗粒夹杂模型表现出的宏观应力-应变关系与试验结果吻合良好,说明双折线损伤模型可以近似表征复合固体推进剂的脱湿损伤。

关键词: 固体推进剂;细观力学;界面损伤;数值模拟;参数反演

Abstract: In order to obtain particle dewetting damage parameters of composite solid propellants,a particle packing model of the composite solid propellant was created by molecular dynamics method. The surface-based cohesive approach was adopted to set the interfacial damage between ammonium perchlorate (AP) particles and the binder. Meco-damage process of the composite solid propellant was computed by numerical simulation method. Stress-strain curves obtained from numerical simulations were compared with the test results. The optimization target function of particle dewetting damage parameters was established,and the parameters were inverted by the step iterative method. The results show that stress-strain curves of the packing model based on the inversion parameters was in good agreement with the test results. It illustrated that the conduplicate-line damage model can exactly describe the dewetting damage process of the composite solid propellant.

Key words: Solid propellant;Mesomechanics;Interfacial damage;Numerical simulation;Parameters inversion