[1] Wadia A R, Szucs P N, Crall D W. Inner Workings of Aerodynamic Sweep[J]. Journal of Turbomachinery, 1998, 120(4): 671-682.
[2] Han C, Puterbaugh S L, Wadia A R. Control of Shock Structure and Secondary Flow Field Inside Transonic Compressor Rotors Through Aerodynamic Sweep[R]. ASME 98-GT-561.
[3] Gallimore S J, Bolger J J. The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading-Part I: University Research and Methods Development[R]. ASME 2002-GT-30328.
[4] Gallimore S J, Bolger J J. The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading-Part II: Low and High-Speed Designs and Test Verification[R]. ASME 2002-GT-30329.
[5] Okui H, Verstraete T, Van den Braembussche R A, et al. Three-Dimensional Design and Optimization of a Transonic Rotor in Axial Flow Compressors[J]. Journal of Turbomachinery, 2013, 135(3).
[6] Bergner J, Kablitz S, Passrucker H, et al. Influence of Sweep on the 3D Shock Structure in an Axial Transonic Compressor[R]. ASME 2005-GT-68835.
[7] Denton J D, Xu L. The Effects of Lean and Sweep on Transonic Fan Performance[R]. ASME 2002-GT-30327.
[8] Blaha C, Kablitz S, Hennecke D K, et al. Numerical Investigation of the Flow in an Aft-Swept Transonic Compressor Rotor[R]. ASME 2000-GT-0490.
[9] Benini E, Biollo R. On the Aerodynamics of Swept and Leaned Transonic Compressor Rotors[R]. ASME 2006-GT-90547.
[10] 刘小民, 高健. 弯曲叶片对跨音速轴流压气机性能影响的数值研究[J]. 流体机械, 2010, 38(2): 13-17.
[11] 毛明明. 跨声速轴流压气机动叶弯和掠的数值研究[D]. 哈尔滨:哈尔滨工业大学, 2008.
[12] 毛明明, 宋彦萍, 王仲奇. 跨声速轴流压气机动叶弯和掠效应的应用[J]. 工程热物理学报, 2009, 30(4):581-586.
[13] 毛明明, 宋彦萍, 王仲奇. 跨声速轴流压气机动叶的三维弯掠设计研究[J]. 动力工程, 2008, 28(1): 58-63.
[14] Rose M G. Non-Axisymmetric Endwall Profiling in the HP NGV’s of an Axial Flow Gas Turbine[R]. ASME 94-GT-294.
[15] Schuepbach P, Abhari R S. Improving Efficiency of a High Work Turbine Using Non-Axisymmetric Endwalls-Part II: Time-Resolved Flow Physics[R]. ASME 2008-GT-50470.
[16] Knezevici D C, Sjolander S A. Measurements of Secondary Losses in a High-Lift Front-Loaded Turbine Cascade with the Implementation of Non-Axisymmetric Endwall Contouring[R]. ASME 2009-GT-59677.
[17] 郑金, 李国君, 李军, 等. 一种新非轴对称端壁成型方法的数值研究[J]. 航空动力学报, 2007, 22(9):1487-1491.
[18] 刘波, 管继伟, 陈云永. 用端壁造型减小涡轮叶栅二次流损失的数值研究[J]. 推进技术, 2008, 29(3):355-359. (LIU Bo, GUAN Ji-wei, CHEN Yun-yong. Numerical Investigation for Effect of Non-Axisymmetric Endwall Profiling on Secondary Flow in Turbine Cascade[J]. Journal of Propulsion Technology, 2008, 29(3):355-359.)
[19] Torre D, Vázquez R, De la Rosa Blanco E, et al. A New Alternative for Reduction of Secondary Flows on Low Pressure Turbines[R]. ASME 2006-GT-91002.
[20] Brennan G, Harvey H W, Rose M G, et al. Improving the Efficiency of Trent 500 HP Turbine Using Non-Axisymmetric End wall: Part I: Turbine Design[R]. ASME 2001-GT-0444.
[21] Rose M G, Harvey N W, Seaman P. Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric End Wall: Part II: Experimental Validation[R]. ASME 2001-GT-0505.
[22] Reid L, Moore R D. Design and Overall Performance of Four Highly Loaded, High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor[R]. NASA-TP-1337, 1978.
[23] Reid L, Moore R D. Performance of Single-Stage Axial-Flow Transonic Compressor with Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and with Design Pressure Ratio of 1.82[R]. NASA-TP-1338, 1978. * 收稿日期:2014-04-02;修订日期:2014-12-17。基金项目:国家自然科学基金重点项目(51236006)。作者简介:张鹏,男,博士生,研究领域为叶轮机械气动热力学。E-mail: zhengpeng257@163.com(编辑:史亚红)
|