推进技术 ›› 2016, Vol. 37 ›› Issue (2): 250-257.

• 舰船推进 • 上一篇    下一篇

三维造型和非轴对称端壁在跨声速压气机中的应用

张 鹏,刘 波,毛晓晨,杨晰琼,程 昊   

  1. 西北工业大学 动力与能源学院,陕西 西安 710072,西北工业大学 动力与能源学院,陕西 西安 710072,西北工业大学 动力与能源学院,陕西 西安 710072,西北工业大学 动力与能源学院,陕西 西安 710072,西北工业大学 动力与能源学院,陕西 西安 710072
  • 发布日期:2021-08-15
  • 作者简介:张 鹏,男,博士生,研究领域为叶轮机械气动热力学。
  • 基金资助:
    国家自然科学基金重点项目(51236006)。

Application of 3D Blading and Non-Axisymmetric Endwall in a Transonic Compressor

  1. School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China,School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China,School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China,School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China and School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
  • Published:2021-08-15

摘要: 为了提高跨声速压气机转子的气动性能,基于全三维数值模拟优化平台,对该转子先后进行了三维造型和非轴对称端壁造型,并对造型前后转子的性能和流场结构进行了对比分析。结果表明:三维造型和非轴对称端壁造型均可以改善跨声速压气机的气动性能,三维优化造型后近设计点压气机等熵效率提高了0.75%,非轴对称端壁优化造型后等熵效率进一步提高了0.3%,同时压气机的非设计工况性能也得到提升。三维造型改变了通道内激波位置,调整了负荷沿径向的分布,最终提高了压气机等熵效率。非轴对称端壁通过改变叶根截面叶片表面静压分布,使得叶根附近激波强度减弱并向下游移动,进而有效地降低了端壁区域的横向二次流强度。

关键词: 压气机;非轴对称端壁;跨声速;优化;激波结构

Abstract: In order to improve the aerodynamic performance of a transonic compressor rotor,based on three dimensional numerical simulation optimization platform,3D blading and non-axisymmetric endwall contouring has been carried out successively on this rotor and changes of performance and flow field were compared and analyzed. The results show that both 3D blading and non-axisymmetric endwall contouring can improve the aerodynamic performance of the transonic compressor. On near design point,the isentropic efficiency increased by 0.75% after 3D blading optimization and further increased by 0.3% after non-axisymmetric endwall contouring optimization,meanwhile the off-design performance of the compressor has also been improved. 3D blading changes the position of shock wave in the blade channel,adjusts the load distribution along the radial span,and finally increases the isentropic efficiency of the compressor. Through changing the static pressure distribution at the hub,non-axisymmetric endwall weakens the intensity of shock wave near the hub,and makes it move backward,and thereby reduces the intensity of transverse secondary flow in the endwall region.

Key words: Compressor;Non-axisymmetric endwall;Transonic;Optimization;Shock wave structure