[1] William H H, David T P. Hypersonic Airbreathing Propulsion [M]. USA: American Institute of Aeronautics and Astronatics, Inc.1994.
[2] Corin S . The Scramjet Engine Processes and Characteristics [M]. USA: Cambridge University Press, Inc.2009.
[3] Gruber M R. Fundamental Investigations of an Integrated Fuel Injector/Flameholder Concept for Supersonic Combustion [R]. AFRL-PR-WP-TR-1998-2111, 1998.
[4] Mathur T, Gruber M R, Jackson K, et al. Supersonic Combustion Experiments with a Cavity-Based Fuel Injector[J]. Journal of Propulsion and Power, 2001, 17(6): 1305-1312.
[5] Ben-Yakar A, Hanson R K. Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: an Overview[J]. Journal of Propulsion and Power, 2001, 17(6): 1305-1312.
[6] Gruber M R, Baurle R A, Mathur T, et al. Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors[J]. Journal of Propulsion and Power, 2001, 17(1): 146-153.
[7] Gruber M R, Donbar J M, Carter C D, et al. Mixing and Combustion Studies Using Cavity-Based Flameholders in a Supersonic Flow[J]. Journal of Propulsion and Power, 2004, 20(5): 769-778.
[8] Gruber M R, Carter C, Ryan M, et al. Laser-Based Measurements of OH, Temperature, and Water Vapor Concentration in a Hydrocarbon Fueled Scramjet[R]. AIAA 2008-5070.
[9] Micka D J, Torrez S M, Driscoll J F. Heat Release Distribution in a Dual-Mode Scramjet Combustor Measurements and Modeling[R]. AIAA 2009-7362.
[10] Gruber M R, Smith S, Mathur T. Experimental Characterization of Hydrocarbon-Fueled, Axisymmetric Scramjet Combustor Flowpaths[R]. AIAA 2011-2311.
[11] Micka D J, Driscoll J F. Combustion Characteristics of a Dual-Mode Scramjet Combustor with Cavity FlameHolder[J]. Proceedings of the Combustion Institute, 2009, 32: 2397–2404.
[12] 孙明波. 超声速来流稳焰凹腔的流动及火焰稳定机制研究[D]. 长沙:国防科技大学, 2008.
[13] Zhang X, Edwards J A. An Investigation of Supersonic Oscillatory Cavity Flows Driven by Thick Shear Layers[J]. Aeronatical Journal, 1990, 94 (940): 355-364.
[14] Rockwell D, Naudascher E. Review-Self-Sustaining Oscillations of Flow Past Cavities[J]. Journal of Fluids Engineering, 1978, 100(6): 152-165.
[15] 龚诚. 超声速气流中点火、火焰传播实验与数值模拟研究[D]. 长沙:国防科技大学, 2011.
[16] 潘余. 超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究[D]. 长沙:国防科技大学, 2007.
[17] 范周琴, 刘卫东, 孙明波, 等. 超燃冲压发动机多凹腔燃烧室混合与燃烧性能定量分析[J]. 推进技术, 2012, 33(2): 185-192. (FAN Zhou-qin, LIU Wei-dong, SUN Ming-bo, et al. Quantitative Analysis of Mixing and Combustion in the Scramjet Multi-Cavity Combustor[J]. Journal of Propulsion Technology, 2012, 33(2): 185-192.)
[18] Sun M B, Zhong Z, Liang J H, et al. Experimental Investigation of a Supersonic Model Combustor with Distributed Injection of Supercritical Kerosene[J]. Journal of Propulsion and Power, 2014, 30(6): 1537-1542.
[19] 范周琴, 刘卫东, 林志勇, 等. 凹腔喷射超声速燃烧火焰结构实验研究[J]. 推进技术, 2013, 34(1): 62-68. (FAN Zhou-qin, LIU Wei-dong, LIN Zhi-yong, et al. Experimental Investigation on Supersonic Combustion Flame Structure with Cavity Injectors[J]. Journal of Propulsion Technology, 2013, 34(1): 62-68.)
[20] Sun M B, Ou Y H, Zhong Z, et al. Flame Asymmetric Characteristics of Transverse Fuel Injection in a Rectangular Supersonic Combustor with Single-Side Expansion[C]. USA: The 12th International Conference on Combustion & Energy Utilisation, 2014.(编辑:梅瑛) * 收稿日期:2014-11-13;修订日期:2015-01-09。作者简介:高天运,男,硕士生,研究领域为高超声速推进技术。E-mail: zgzjgty@sina.com
|