[1] Modest M F. Radiative Heat Transfer [M]. New York: McGraw-Hill Inc, 1993
[2] Al-Omari S-A B, Kawajiri K. Soot Processes in a Methane-Fueled Furnace and Their Impact on Radiation Heat Transfer to Furnace Walls[J]. International Journal of Heat Mass Transfer, 2001, 44(13): 2567-2581.
[3] 娄春, 陈辰, 孙亦鹏, 等. 碳氢火焰中碳黑检测方法评述[J]. 中国科学(技术科学), 2010 , 40 (8): 946-958
[4] Lefebvre A H , Ballal D R. Gas Turbine Combustion-Alternative Fuels and Emissions[M]. 3rd ed, Boca Raton: CRC Press, 2010.
[5] Menguc M P, Cummings W G. Radiative Transfer in a Gas Turbine Combustor [J], Journal of Propulsion and Power, 1986, 2: 241-247.
[6] Lieuwen T C, Yang V. Gas Turbine Emissions[M]. New York: Cambridge University Press, 2013
[7] Puduppakkam K V, Modak A U. A Soot Chemistry Model That Captures Fuel Effects[R]. ASME GT 2014-27123.
[8] Samuelsen G S.http://www. ucicl. uci. edu/2/Researchprojects/emissions/emissions-Particulate Emissions. pdf [EB/OL].
[9] Liscinsky D S, Yu Z. Characterization of Aviation Soot Emissions with a High-Pressure Gas Turbine Combustor Rig[R]. ASME GT 2014-25226.
[10] Mehta R S, Modest M F. Radiation Characteristics and Turbulence-Radiation Interactions in Sooting Turbulent Jet Flames[J]. Combustion Theory and Modeling, 2010, 14(1): 105-124.
[11] Dorey L H, Bertier N. Soot and Radiation Modeling in Laminar Ethylene Flames with Tabulated Detailed Chemistry[J]. Comptes Rendus Mecanique, 2011, 339: 756-769.
[12] Wang L, Haworth D C. Interactions Among Soot, Thermal Radiation, and NOx Emissions in Oxygen-Riched Turbulent Non-Premixed Flames: a Computational Fluid Dynamics Modeling Study[J]. Combustion and Flame, 2005, 141: 170-179.
[13] 陈亮, 成晓北, 颜方沁, 等. 基于改进的详细碳烟模型的柴油燃烧碳烟颗粒物的生成特性[J]. 燃烧科学与技术, 2013, 19(3): 234-240.
[14] 熊刚. 煤和生物质燃烧碳烟生成的实验研究[D]. 北京:清华大学, 2011.
[15] Tien C L, Lee K Y. Radiation Heat Transfer //SFPE Handbook of Fire Protection Engineering[M]. Quincy, MA: 3rd ed, National Fire Protection Association,2002.
[16] Felske J D, Tien C L. The Use of the Milne-Eddington Absorption Coefficient for Radiative Heat Transfer in Combustion Systems[J]. ASM Journal of Heat Transfer, 1977, 99(3): 458-465.
[17] Dalzell W H, Sarofim A F. Optical Constants of Soot and Their Application to Heat Flux Calculations[J]. Journal of Heat Transfer, 1969, 91-100.
[18] Smyth K C, Shaddix C R. The Elusive History of m=1.57-0.56i for the Refractive Index of Soot[J]. Combustion and Flame, 1996, 107: 314-320.
[19] Atreya A, Agrawal S. Effect of Radiative Heat Loss on Diffusion Flames in Quiescent Microgravity Atmosphere [J]. Combustion and Flame, 1998, 115: 372-382.
[20] Liu F, Guo H. Effects of Gas and Soot Radiation on Soot Formation in a Coflow Laminar Ethylene Diffusion Flame[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 73: 409-421.
[21] Liu F, Guo H. Effects of Gas and Soot Radiation on Soot Formation in Counter Flow Ethylene Diffusion Flames[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 84: 501-511.
[22] Liu F, Smallwood G J. The Importance of Thermal Radiation Transfer in Laminar Diffusion Flames at Normal and Microgravity[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112: 1241-1249.
[23] Tésse L,Dupoirieux F. Monte Carlo Modeling of Radiative Transfer in a Turbulent Sooty Flame[J]. International Journal of Heat and Mass Transfer, 2004, 47: 555-572.
[24] Felske J D, Charalampopoulos T T. Gray Gas Weighting Coefficients for Arbitrary Gas-Soot Mixtures[J]. International Journal of Heat and Mass Transfer, 1982, 25(12): 1849-1855.
[25] Grosshandler, W L, Modak A T. Radiation from Nonhomogeneous Combustion Products [J]. Eighteenth Symposium(International) on Combustion, 1991, 18(1): 601-609.
[26] Bressloff N W, Moss J B. Differential Total Absorptivity Solution to the Radiative Transfer Equation for Mixtures of Combustion Gases and Soot[J]. Numerical Heat Transfer, Part B, 1997, 31: 43-60.
[27] Choi M Y, Mulholland G W. Comparisons of the Soot Volume Fraction Using Gravimetric and Light Extinction Techniques[J]. Combustion and Flame, 1995, 102: 161-169.
[28] Viskanta R, Menguc M P. Radiation Heat Transfer in Combustion Systems[J]. Progress in Energy and Combustion Science, 1987, 13: 97-160.
[29] Lautenberger C W, Nicholas A D. CFD Simulation of Soot Formation and Flame Radiation [D]. USA: Worcester Polytechnic Institute, 2001.
[30] De Ris J. Fire Radiation-A Review[J]. Proceedings of the Combustion Institute, 1979, 17: 1003-1016.
[31] Chatterjee P, de Ris J L. A Model for Soot Radiation in Buoyant Diffusion Flames[J]. Proceedings of the Combustion Institute, 2011, 33: 2665-2671.
[32] Beji T, Zhang J P. A Novel Soot Model for Fires: Validation in a Laminar Non-Premixed Flame[J].Combustion and Flame, 2011, 158 (2): 281-290.
[33] Chun Lou, Huai Chun Zhou. A Novel Soot Model for Fires: Validation in a Laminar Non-Premixed Flame[J].Numerical Heat Transfer, Part A, 2009, 56: 153-169.
[34] Widmann J F. Evaluation of the Planck Mean Absorption Coefficients for Radiation Transport through Smoke [J]. Combustion Science and Technology, 2003, 175(12): 2299-2308.
[35] Zuccaa A, Marchisioa D L. Implementation of the Population Balance Equation in CFD Codes for Modelling Soot Formation in Turbulent Flames[J]. Chemical Engineering Science, 2006, 61: 87-95.
[36] Chittipotula T, Janiga G. Improved Soot Prediction Models for Turbulent Non-Premixed Ethylene/Air Flames [J]. Proceedings of the Combustion Institute, 2011, 33(1): 559-567.
[37] Kent J H, Honnery D R. A Soot Formation Rate Map for a Laminar Ethylene Diffusion Flame[J]. Combustion and Flame, 1990: 79: 287-298.
[38] Yeoh G H, Yuen R K K. On Modelling Combustion, Radiation and Soot Processes in Compartment Fire[J]. Building and Environment, 2003, 38: 771-785.
[39] K?ylü ü ?, Faeth G M. Radiative Properties of Flame-Generated Soot [J]. Journal of Heat Transfer, Transactions of the ASME, 1993, 115: 409-417.
[40] Siegel R, Howell J R. Thermal Radiation Heat Transfer (3rd edition)[M]. Washington: Hemisphere Publishing Corp, 1992.
[41] Wang L. Detailed Chemistry, Soot, and Radiation Calculations in Turbulent Reacting Flows [D]. Pennsylvania: The Pennsylvania State University, 2004.
[42] Chang H, Charalampopoulos T T. Determination of the Wavelength Dependence of Refractive Indices of Flame Soot[J]. Proceedings of the Royal Society of London (A), 1990, 430: 577-591.
[43] Mullins J, Williams A. The Optical Properties of Soot: a Comparison between Experimental and Theoretical Values[J]. Fuel, 1987, 66 (2): 277-280.
[44] Howarth C R, Foster P J. The Effect of Temperature on the Extinction of Radiation by Soot Particles[C]. Washington D C: Proceedings of the Third International Heat Transfer Conference, Hemisphere, 1966.
[45] Lee S C, Tien C L. Optical Constants of Soot in Hydrocarbon Flames[J]. Symposium (International) on Combustion Volume, 1981, 18(1): 1159-1166.
[46] Wang L, Endrud N E. A Study of the Influence of Oxygen Index on Soot, Radiation, and Emission Characteristics of Turbulent Jet Flames[J]. Combustion Science and Technology, 2002, 174(8): 45-72.
[47] Stull V R, Plass G N. Emissivity of Dispersed Carbon Particles[J]. Journal of the Optical Society of America, 1960, 50(2): 121-129.
[48] Felske J D, Charalampopoulos T T. Determination of Refractive Indices of Soot Particles from the Reflectivities of Compressed Soot Particles [J]. Combustion Science and Technology, 1984, 37: 263-284.
[49] Chippett S, Gray W A. The Size and Optical Properties of Soot Particles [J]. Combustion and Flame, 1978, 31:149-159.
[50] Zhu X L, Gore J P. Radiation Effects on Combustion and Pollutant Emissions of High-Pressure Opposed Flow Methane/Air Diffusion Flames[J]. Combustion and Flame, 2005, 141: 118-130.
[51] Dobbins R A, Megaridis C M. Morphology of Flame-Generated Soot as Determined by Thermophoretic Sampling[J]. Langmuir, 1987, 3: 254-259.
[52] Jullien R, Botet R. Aggregation and Fractal Aggregates[M]. USA: World Scientific Publishing Co, Singapore, 1987, 46-50.
[53] Samson R J, Mulholland G W, Gentry J W. Structural Analysis of Soot Agglomerates[J]. Langmuir, 1987, 3: 272-281.
[54] Megaridis C M, Dobbins R. Comparison of Soot Growth and Oxidation in Smoking and Non-Smoking Ethylene Diffusion Flames[J]. Combustion Science and Technology, 1989, 66: 1-16.
[55] Megaridis C M, Dobbins R A. Morphological Description of Flame-Generated Materials[J]. Combustion Science and Technology, 1990, 77: 95-109.
[56] K?ylü ü ?, Faeth G M. Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times[J]. Combustion and Flame, 1992, 89: 140-156.
[57] Faeth G M, K?ylü ü ?. Soot Morphology and Optical Properties in Nonpremixed Turbulent Flame Environment[J]. Combustion Science and Technology, 1995, 108: 207-229.
[58] K?ylü ü ?, Faeth G M. Radiative Properties of Ame-generated Soot[J]. ASME Journal of Heat Transfer, 1993, 115: 409-417.
[59] Purcell E M, Pennypecker C R. Scattering and Absorption by Non-Spherical Dielectric Grains[J]. Astrophysical Journal, 1973, 186: 705-714.
[60] Iskander M F, Chen H Y. Optical Scattering and Absorption by Branched-Chains of Aerosols[J]. Applied Optics, 1989, 28: 3083-3091.
[61] 白璐, 吴振森, 陈辉. 分形碳烟粒子的散射特性研究[J]. 西安电子科技大学学报(自然科学版), 2004, 31 (6): 891-895.
[62] Freltoft J K, Kjems T adn. Power-Law Correlations and Finite Size Effects in Silica Particle Aggregates Studies by Small-Angle Neutron Scattering[J]. Physical Review B, 1986, 33: 269-275.
[63] Martin J E, Hurd A J. Scatting from Fractals[J]. Journal of Applied Crystallography, 1987, 20: 61-78.
[64] Dobbins R A, Megaridis C M. Absorption and Scattering of Light by Polydisperse Aggregates[J]. Applied Optics, 1991, 30: 4747-4754.
[65] K?ylü ü ?, Faeth G M. Optical Properties of Overfire Soot in Bouyant Turbulent Diffusion Flame at Long Residence Time[J]. ASME Journal of Heat Transfer, 1994, 116: 152-159.
[66] 王红霞, 马进. 分形凝聚粒子的光散射特性研究[J]. 光学学报, 2011, 31(3): 1-6.
[67] 徐飞. 基于近红外波段的大气粒子散射特性研究[D]. 南京:南京气象学院, 2004.
[68] Fengshan Liu, Gregory J Smallwood. Radiative Properties of Numerically Generated Fractal Soot Aggregates: The Importance of Configuration Averaging[J]. Journal of Heat Transfer, 2010, 132(2): 023308.
[69] 童世唯, 程强, 周怀春. 煤粉燃烧中碳黑颗粒的辐射特性计算研究[D]. 武汉:华中科技大学, 2013.
[70] Fengshan Liu, Jean-Louis Consalvi, Andrés Fuentes. Effects of Water Vapor Addition to the Air Stream on Soot Formation and Flame Properties in a Laminar Coflow Ethylene/Air Diffusion Flame[J]. Combustion and Flame, 2014, 161(7): 1724-1734.(编辑:史亚红) * 收稿日期:2014-10-14;修订日期:2015-01-27。基金项目:中央高校基本科研业务费专项资金资助;国家自然科学基金资助项目(50606004);国家教育部回国留学人员科 研启动基金。作者简介:刘玉英,女,博士,副教授,研究领域为航空发动机燃烧、燃烧过程辐射换热。E-mail:
|