[1] Baldauf S, Scheurlen M, Schulz A, et al. Correlation of Film-Cooling Effectiveness from Thermographic Measurement at Enginelike Condition[J]. ASME Journal of Turbomachinery, 2002, 24: 686-698.
[2] Pedersen D R, Eckert E, Goldstein R. Film Cooling with Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy[J]. ASME Journal of Heat Transfer, 1977, 99: 620-627.
[3] Maiteh B Y, Jubran B A. Effect of Pressure Gradient on Film Cooling Effectiveness from Two Rows of Simple and Compound Angle Holes in Combination[J]. Journal of Energy and Management, 2004, 45: 1457-1469.
[4] Mayle R E, Camarata F J. Mutihole Cooling Film Effectiveness and Heat Transfer[J]. ASME Journal of Heat Transfer, 1975, 97: 534-538.
[5] Foster N W, Lampard D. The Flow and Film Cooling Effectiveness Following Injection through a Row of Holes[J]. ASME Journal of Engineering for Power, 1980, 102: 584-588.
[6] Kohli A, Bogard D. Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling with Large Angle Injection[J]. ASME Journal of Turbomachinery, 1997, 119: 352–358.
[7] Burd S W, Simon T W. Measurements of Discharge Coefficients in Film Cooling [J]. ASME Journal of Turbomachinery, 1999, 121: 791-798.
[8] Wolfgang Ganzert, Thomas Hildebrandt, Leonhard Fottner. Systematic Expermental and Numerical Investigations on the Aerothermodynamics of a Film Cooled Turbine Cascade with Variation of the Cooling Hole Shape, Part 1: Experimantal Approach [R]. ASME 2000-GT-295.
[9] Sargison J E, Guo S M, Oldfield M L G, et al. A Converging Slot-Hole Film-Cooling Geometry: Part I: Low-Speed Flat-Plate Heat Transfer and Loss[R]. ASME 2001-GT-0126.
[10] Liu Cun-liang, Zhu Hui-ren, Bai Jiang-tao, et al. Film Cooling Performance of Converging-Slot Holes with Different Exit-Entry Area Ratios[R]. ASME 2009-GT-59002.
[11] Kasten Kusterer, Nurerrin Tekin, Azadeh Kasiri, et al. Highest-Efficient Film Cooling by Improved Nekomimi Film Cooling Holes, Part 1: Ambient Air Flow Conditions [R]. ASME 2013-GT-95027.
[12] Kasten Kusterer, Nurerrin Tekin, Azadeh Kasiri, et al. Highest-Efficient Film Cooling by Improved Nekomimi Film Cooling Holes, Part 2: Hot Gas Flow Conditions [R]. ASME 2013-GT-95042.
[13] Kusterer K, Bohn D, Sugimoto T, et al. Double-Jet Film Cooling for Highly Efficient Film Cooling with Low Blowing Ratios[R]. ASME 2008-GT-50073.
[14] Wang Zhan , Liu Jian-jun, Zhang Chao. Impacts of Geometric Parameters of Double-Jet Film Cooling on Anti-Kidney Vortex Structure and Cooling Effectiveness [R]. ASME 2013-GT-94038.
[15] Lu Yiping, Alok D, Srinath V E, et al. Effect of Trench Width and Depth on Film Cooling from Cylindrical Holes Embedded in Trenches[R]. ASME 2007-GT-27388.
[16] Jiang H W, Han J C. Effect of Film Hole Row Location on Film Effectiveness on a Gas Turbine Blade[ J] . ASME Journal of Heat Transfer, 1996, 118: 327-333.
[17] 朱惠人, 向安定, 许都纯, 等. 涡轮叶片表面气膜冷却效率的实验研究[J]. 推进技术, 2003, 24(6): 528-531. (ZHU Hui-ren, XIANG An-ding, XU Du-chun, et al. An Experimental Investigation of Film Cooling Effectiveness on the Surface of Turbine Blade[J]. Journal of Propulsion Technology, 2003, 24(6): 528-531.)
[18] 朱惠人, 马兰, 许都纯, 等. 孔位对涡轮叶片表面气膜冷却换热系数的影响[J]. 推进技术, 2005, 26(4): 302-306. (ZHU Hui-ren, MA Lan, XU Du-chun, et al. Influences of Position of Hole Rows on Film Cooling Heat Transfer of Turbine Blade Surface[J]. Journal of Propulsion Technology, 2005, 26(4): 302-306.)
[19] Winka J R, Anderson J B. Convex Curvature Effects on Film Cooling Adiabatic Effectiveness[R]. ASME 2013-GT-95243.
[20] 张宗卫, 朱惠人, 刘聪, 等. 全气膜冷却叶片表面换热系数和冷却效率研究[J]. 西安交通大学学报, 2012, 46(7): 103-107.
[21] Arts T, Duboue J M, Rollin G. Aerothermal Performance Measurements and Analysis of a Two-Dimensional High Turning Rotor Blade[J]. ASME Journal of Turbomachinery, 1998, 120: 494-499.
[22] Giel P W, Boyle R J, Bunker R S. Measurements and Predictions of Heat Transfer on Rotor Blades in a Transonic Turbine Cascade[J]. Journal of Turbomachinery, 2004, 126: 110-121.
[23] Newman A, Xue S, Ng W, et al. Performance of a Showerhead and Shaped Hole Film Cooled Vane at High Freestream Turbulence and Transonic Conditions[R]. ASME 2011-GT-45142.
[24] 樊建博, 朱惠人, 刘聪, 等. 攻角对涡轮叶片表面流动及换热的影响[J]. 推进技术, 2014, 35(10):1372-1377. (FAN Jian-bo, ZHU Hui-ren, LIU Cong, et al. Effects of Different Incidences on Surface Flow and Heat Transfer in Turbine Blade[J]. Journal of Propulsion Technology, 2014, 35(10): 1372-1377.)
[25] 朱彦伟. 短周期传热风洞气动特性模拟与控制方法研究[D]. 西安:西北工业大学, 2007.
[26] 李红才, 朱惠人, 任展鹏, 等. 短周期跨声速风洞叶栅换热实验验证[J]. 西安交通大学学报, 2013, 47(9): 49-54.
[27] Oldfield M L G. Impulse Response Processing of Transient Heat Transfer Gauge Signals[J]. ASME Journal of Turbomachinery, 2008, 130(2): 1-9.
[28] Smith D E, Bubb J V, Popp O, et al. An Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Steady Heat Transfer[R]. ASME 2000-GT-0202.
[29] 李红才, 朱惠人, 任战鹏, 等. 短周期跨声速风洞叶栅换热实验验证[J]. 西安交通大学学报, 2013, 47(9): 49-54.
[30] Doyle Knight, Hong Yan, Panaras Argyris G. Advances in CFD Prediction of Shock Wave Turbulent Boundary Layer Interactions[J]. Progress in Aerospace Sciences, 2003, 39: 121-184.
[31] Zheltovodov A A. Some Advances in Research of Shock Wave Turbulent Boundary Layer Interactions[R]. AIAA 2006-496. * 收稿日期:2015-04-01;修订日期:2015-06-10。作者简介:刘聪,男,博士生,研究领域为航空发动机高温部件强化传热及气膜冷却技术。E-mail: l2008c@aliyun.co(编辑:张荣莉)
|