[1] 李向宾, 王国玉, 张敏弟, 等.绕水翼超空化流动形态与速度分布[J]. 力学学报, 2008, 40(3): 315-322.
[2] Rood E P. Review-Mechanisms of Cavitation Inception[J]. Journal of Fluid Engineering, 1991, 113(2): 163-175.
[3] 季斌, 罗先武, 彭晓星, 等. 绕扭曲翼型三维非定常空泡脱落结构的数值分析[J]. 水动力学研究与进展, 2010, 25(2): 217-223.
[4] Kawanami Y, Kato H. Mechanism and Control of Cloud Cavitation[J]. Journal of Fluids Engineering, 1997, 119(8): 788-794.
[5] Hosangadi A, Ahuja V. Numerical Study of Cavitation in Cryogenic Fluids[J]. Journal of Fluids Engineering, 2005, 127(2): 267-281.
[6] 季斌, 罗先武, 吴玉林, 等. 考虑热力学效应的高温水空化模拟[J]. 清华大学学报(自然科学版), 2010, 50(2): 262-265.
[7] 斯捷潘诺夫 A J. 泵与鼓风机、多相流[M]. 吴达人, 译. 北京:机械工业出版社, 1986.
[8] Edwards T, Maurice L Q. Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels[J]. Journal of Propulsion and Power, 2001, 17(2): 461-466.
[9] Dagaut P. On the Kinetics of Hydrocarbons Oxidation from Natural Gas to Kerosene and Diesel Fuel[J]. Physical Chemistry Chemical Physics, 2002, 4(4): 2079-2094.
[10] Montgomery C J, Cannon S M, Mawid M A, et al. Reduced Chemical Kinetic Mechanisms for JP-8 Combustion[C]. Reno, Nevada: 40th AIAA Aerospace Science Meeting and Exhibit, 2002: 1-10.
[11] 范学军, 俞刚. 大庆RP-3航空煤油热物性分析[J]. 推进技术, 2006, 27(2): 187-192. (FAN Xue-jun, YU Gang, Analysis of Thermophysical Properties of Daqing RP-3 Aviation Kerosene[J]. Journal of Propulsion Technology, 2006, 27(2): 187-192.)
[12] Violi A, Yan S, Eddings E G, et al. Experimental Formulation and Kinetic Model for JP-8 Surrogate Mixtures[J]. Combustion Science and Technology, 2002, 174(11&12): 399-417.
[13] 曾文, 李海霞, 马洪安, 等. RP-3航空煤油模拟替代燃料的化学反应简化机理[J]. 推进技术, 2014, 35(8): 1139-1145. (ZENG Wen, LI Hai-xia, MA Hong-an, et al. Reduced Chemical Reaction Mechanism of Surrogate Fuel for RP-3 Kerodene[J]. Journal of Propulsion Technology, 2014, 35(8): 1139-1145.)
[14] Kunz O, Klimeck R, Wagner W, et al. The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures[R]. VDI 6, 557, 2007.
[15] Kubota A, Kato H, Yamauchi H, et al. Unsteady Structure Measurement of Cloud Cavitation on a Foil Section using Conditional Sampling Technique[J]. Journal of Fluids Engineering, 1989, 111(2): 204-210.
[16] Singhal A K, Athavale M M, Li H, et al. Mathematical Basis and Validation of the Full Cavitation Model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.
[17] Dunn P F, Thomas F O, Davis M P, et al. Experimental Characterization of Aviation-Fuel Cavitation[J]. Physics of Fluids, 2010, 22(11): 117102.
[18] Franc J P, Rebattet C, Coulon A. An Experimental Investigation of Thermal Effects in a Cavitating Inducer[C]. Osaka: Fifth International Symposium on Cavitation, 2003.
[19] Utturkar Y, Wu J, Wang G, et al. Recent Progress in Modeling of Cryogenic Cavitation for Liquid Rocket Propulsion[J]. Progress in Aerospace Sciences, 2005, 41(7): 558-608.
[20] Goel T, Zhao J, Thakur S, et al. Surrogate Model Based Strategy for Cryogenic Cavitation Model Validation and Sensitivity Evaluation[J]. International Journal for Numerical Methods in Fluids, 2008, 58(9): 969-1007.
[21] 尹敦兵, 陈铁重, 丛培胜, 等. 基于JP-10与RP-3燃烧的数值模拟[J]. 海军航空工程学院学报, 2008, 23(3): 276-280.
[22] Ely J F, Huber M L. NIST Standard Reference Datebase 4-NIST Thermophysical Properties of Hydrocarbon Mixtures[M]. Gaithersburg: National Inst.of Standards, MD, 1990.(编辑:梅瑛) * 收稿日期:2014-10-10;修订日期:2015-01-02。基金项目:国家自然科学基金资助项目(51479002);航空科学基金项目(2013ZC09001)。作者简介:陈泰然,男,博士生,研究领域为空化热流体动力特性与机理。E-mail: chentairan617@163.com
|