[1] 邹吉军, 郭成, 张香文, 等. 航天推进用高密度液体碳氢燃料:合成与应用[J]. 推进技术, 2014, 35(10): 1419-1425. (ZOU Ji-jun, GUO Cheng, ZHANG Xiang-wen, et al. High-Density Liquid Hydrocarbon Fuels for Aerospace Propulsion: Synthesis and Application[J]. Journal of Propulsion Technology, 2014, 35(10): 1419-1425.)
[2] 邹吉军, 张香文, 王莅, 等. 高密度液体碳氢燃料合成及应用进展[J]. 含能材料, 2007, 15(4): 411-415.
[3] Chung H S, Chen C S H, Kremer R A, et al. Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels[J]. Energy & Fuels, 1999, 13(3): 641-649.
[4] Peters J E, Mellor A M. Liquid Fuel Spray Ignition Predictions for JP-10[J]. Journal of Energy, 1983, 7(1): 95-96.
[5] Nakra S, Green R J, Anderson S L. Thermal Decomposition of JP-10 Studied by Micro-Flowtube Pyrolysis-mass Spectrometry[J]. Combustion and Flame, 2006, 144(4): 662-674.
[6] Li S C, Varatharajan B, Williams F A. Chemistry of JP-10 Ignition[J]. AIAA Journal, 2001, 39(12): 2351-2356.
[7] Cho S Y, Takahashi F, L Dryer F. L. Some Theoretical Considerations on the Combustion and Disruption of Free Slurry Droplets[J]. Combustion Science and Technology, 1989, 67: 37-57.
[8] Takahashi F, Heilweil I J, Dryer F L, Disruptive Burning Mechanism of Free Slurry Droplets[J]. Combustion Science and Technology, 1989, 65: 151-165.
[9] Antaki P, Williams F A, Observations on the Combustion of Boron Slurry Droplets in Air[J]. Combustion and Flame, 1987, 67 (1): 1-8.
[10] 江治, 李疏芬, 赵凤起, 等. 纳米金属粉对HMX热分解特性的影响[J]. 推进技术, 2002, 23(3): 258-261 (JIANG Zhi, LI Shu-fen, ZHAO Feng-qi, et al. Effect of Nano Metal Powder on the Thermal Decomposition Characteristics of HMX[J]. Journal of Propulsion Technology, 2002, 23(3): 258-261.)
[11] 陈沛, 赵凤起, 杨栋, 等. 纳米级金属粉对GAP热分解特性的影响[J]. 推进技术, 2000, 21(5): 73-76. (CHEN Pei, ZHAO Feng-qi, Yang Dong, et al. Effect of Nano Metal Powder on Thermal Decomposition Characteristics of Glycidyl Azide Polymer[J]. Journal of Propulsion Technology, 2000, 21(5): 73-76.)
[12] Van Devener B, Anderson S L. Breakdown and Combustion of JP-10 Fuel Catalyzed by Nanoparticulate CeO2 and Fe2O3[J]. Energy & Fuels, 2006, 20(5): 1886-1894.
[13] Kareiva A, Harlan C J, MacQueen D B, et al. Carboxylate-Substituted Alumoxanes as Processable Precursors to Transition Metal-Aluminum and Lanthanide-Aluminum Mixed-Metal Oxides: Atomic Scale Mixing Via a New Transmetalation Reaction[J]. Chemistry of Materials, 1996, 8(9): 2331-2340.
[14] Wickham D T, Cook R, De Voss S, et al. Soluble Nano-Catalysts for High Performance Fuels[J]. Journal of Russian Laser Research, 2006, 27(6): 552-561.
[15] Peterson R R, Cliffel D E. Continuous Free-Flow Electrophoresis of Water-Soluble Monolayer-Protected Clusters[J]. Analytical Chemistry, 2005, 77(14): 4348-4353.
[16] Brust M, Walker M, Bethell D, et al. Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid-Liquid System[J]. Chemical Communications, 1994, (7): 801-802.
[17] Pan W, Zhang X, Ma H. Electrochemical Synthesis, Voltammetric Behavior, and Electrocatalytic Activity of Pd Nanoparticles[J]. Journal of Physical Chemistry, 2008, 112: 2456-2461.
[18] Warren S C, Banholzer M J, Slaughter L S. Generalized Route to Metal Nanoparticles with Liquid Behavior[J].Journal of the American Chemical Society, 2006, 128: 12074-12075.
[19] Chen S, Huang K, Stearns J A. Alkanethiolate-Protected Palladium Nanoparticles[J]. Chemical Material, 2000, 12 (2): 540-547.
[20] Wang J, Liu Y, Zhang X, et al. Facile Preparation of Hydrocarbon Fuel-Soluble Nano-Catalyst and Its Novel Application in Catalytic Combustion of JP-10[J]. Catalysis Communications, 2009, 10(11): 1518-1522.
[21] E X, Zhang Y, Zou J, et al. Oleylamine Protective Metal (Pt, Pd) Nanoparticles for Pseudo-Homogeneous Catalytic Cracking of JP-10 Jet Fuel[J]. Industrial & Engineering Chemistry Research, 2014, 53(31): 12312-12318.(编辑:史亚红) * 收稿日期:2014-11-19;修订日期:2015-01-07。基金项目:装备预研项目(625010304)。作者简介:王方,女,硕士生,研究领域为航天燃料添加剂。E-mail: fangw@tju.edu.cn通讯作者:邹吉军,男,博士,教授,研究领域为航天燃料化学与技术。E-mail: jj_zou@tju.edu.cn
|