[1] Meltzer J, Shepherd J E, Akbar R, et al. Mach Reflection of Detonation Waves[J]. Progress in Astronautics and Aeronautics, 1991,(153): 78-94.
[2] Akbar R. Mach Reflection of Gaseous Detonations[D]. Troy: Rensselaer Polytechnic Institute, 1997.
[3] Guo C M, Zhang D L, Xie W. The Mach Reflection of a Detonation Based on Soot Track Measurements[J]. Combustion and Flame, 2001, 127(3): 2051–2058.
[4] Thomas G O, Williams R LI. Detonation Interaction with Wedges and Bends[J]. Shock Waves, 2002, 11: 481-492.
[5] 张德良, 谢巍, 郭长铭, 等. 气相爆轰胞格结构和马赫反射数值模拟[J]. 爆炸与冲击, 2001, 21(3): 161-167.
[6] Zongmin Hu, Zonglin Jiang. Wave Dynamic Processes in Cellular Detonation Reflection from Wedges[J]. Acta Mechanica Sinica, 2007, 23(1): 33–41.
[7] Wang C J, Guo C M. On the Influence of Low Initial Pressure and Detonation Stochastic Nature on Mach Reflection of Gaseous Detonation Waves[J]. Shock Waves, 2014(24): 467–477.
[8] Li H, Ben-Dor G. Analytical Study of the Oblique Reflection of Detonation Waves[J]. AIAA Journal, 1997, 35(11): 1712-1720.
[9] Trosyuk A V. Numerical Study of the Reflection of Detonation Waves from a Wedge[J]. Combustion, Explosion and Shock Waves, 1999, 35(6): 690-697.
[10] 卢秦尉, 熊姹, 范玮. 稀释氩气对分叉管内爆震波绕射的影响[J]. 推进 技术, 2014, 35(11): 1566-1576. (LU Qin-wei, XIONG Cha, FAN Wei. Effects of Argon Dilution on Detonation Diffraction in Branch Tube[J]. Journal of Propulsion Technology, 2014, 35(11): 1566-1576.)
[11] John H S Lee. Detonation Phenomenon[M]. Cambridge: Cambridge University Press, 2007.
[12] Hornung HG H. Regular and Mach Reflection of Shock Waves[J]. Annual Review Fluid Mechanics, 1986, (18): 33-58.
[13] Ben-Dor G. Shock Wave Reflection Phenomena[M]. Delauare: Springer-Verlag, 2007.
[14] Kazuyoshi Takayama, Gabi Ben-Dor. State-of-the-Art in Research on Mach Reflection of Shock Waves[J]. Sandhana, 1993,(18): 695-710.
[15] Be-Dor G, Takayama K. The Phenomena of Shock Wave Reflection—a Review of Unsolved Problems and Future Research Needs[J]. Shock Waves, 1992, (2): 211-223.
[16] Kobayashi S, Adachi T. Consideration of Von Neumann Reflection and Mach Reflection for Strong Shock Waves[C]. Heidelberg: 28th International Symposium on Shock Waves, 2012: 485-491.
[17] 杨旸, 姜宗林, 胡宗民. 激波反射现象的研究进展[J]. 力学进展, 2012, 42(2): 141-161.
[18] Viero D P, Susin F M, Defina A. A Note on Weak Shock Wave Reflection[J]. Shock Waves, 2013, (23): 505-511.
[19] Desbordes D, Guerraud C, Hamada L, et al. Failure of the Classical Dynamic Parameters Relationships in Highly Regular Cellular Detonation Systems[C]. New York: Progress in Astronautics and Aeronautics, 1993.
[20] Shepherd J E, Schultz E, Akbar R. Detonation Diffraction[C]. London: Proceedings of 22nd International Symposium on Shock Waves, 2000.
[21] Pintgen F, Eckett C A, Austin J M, et al. Direct Observations of Reaction Zone Structure in Propagating Detonations[J]. Combustion and Flame, 2003, 133(3): 211–229.
[22] Joanna M Austin. The Role of Instability in Gaseous Detonation[D]. California: California Institute of Technology, 2003.
[23] Eckett C A. Numerical and Analytical Studies of the Dynamics of Gaseous Detonations[D]. California: California Institute of Technology, 2000.
[24] Eckett C A, Quirk J J, Shepherd J E. The Role of Unsteadiness in Direct Initiation of Gaseous Detonation[J].Fluid Mechanics, 2000, 421: 147-183.
[25] White D R, Caby K H. Structure of Gaseous Detonation[J]. Physics of Fluids, 1963, 6 (5): 749-750.
[26] Strehlow R A. Reactive Gas Mach Stems[J]. Physics of Fluids, 1964, 7(6): 908-909.
[27] 周朱林, 刘卫东, 刘世杰, 等. 受侧向膨胀影响的爆震波传播过程研究[J]. 推进技术, 2013, 34(5): 713-720. (ZHOU Zhu-lin, LIU Wei-dong, LIU Shi-jie, et al. Investigation on Propagation Process of Detonation Wave Influenced by Lateral Expansion[J]. Journal of Propulsion Technology, 2013, 34(5): 713-720.)* 收稿日期:2014-12-22;修订日期:2015-01-27。基金项目:国家自然科学基金(11172141)。作者简介:刘杰,男,博士生,研究领域为爆震物理研究。 E-mail: liujie8812@163.com (编辑:史亚红)
|