[1] Edwards T. Liquid Fuel and Propellant for Aerospace Propulsion: 1903-2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107.
[2] Lander H, Nixon A C. Endothermic Fuels for Hypersonic Vehicles[J]. Journal of Aircraft, 1971, 8(4): 200-207.
[3] Wagner W R, Shoji J M. Advanced Regenerative Cooling Techniques for Future Space Transportation Systems[R]. AIAA 75-1247.
[4] Huang H, Spadaccini L J, Sobel D R. Fuel-Cooled Thermal Management for Advanced Aero-Engines[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126: 284–293.
[5] Tishkoff J M, Drummond J P, Edwards T, et al. Future Direction of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion[R]. AIAA 97-1017.
[6] Yang V. Modeling of Supercritical Vaporization, Mixing and Combustion Processes in Liquid-Fueled Propulsion System[J]. Proceeding of the Combustion Institute, 2000, 28: 925-942.
[7] Fan X J, Yu G, Li J G, et al. Investigation of Vaporized Kerosene Injection and Combustion in a Supersonic Model Combustor[J]. Journal of Propulsion and Power, 2006, 22(1): 103-110.
[8] Gao W, Liang H S, Xu Q H, et al. Injection of Supercritical Aviation Kerosene Fuel into Quiescent Atmospheric Environment[R]. AIAA 2009-4927.
[9] Fan X J, Yu G, Li J G, et al. Combustion and Ignition of Thermally Cracked Kerosene in Supersonic Model Combustors[J]. Journal of Propulsion and Power, 2007, 23(2): 317-324.
[10] Fan X J, Yu G, Li J G, et al. Performance of Supersonic Model Combustors with Distributed Injection of Supercritical Kerosene[R]. AIAA 2007-5406.
[11] Fan X J, Yu G, Li J G, et al. Performance of a Supersonic Model Combustor Using Vaporized Kerosene Injection[R]. AIAA 2004-3485.
[12] Yu G, Fan X J, Li J G, et al. Characterization of a Supersonic Model Combustor with Partially-Cracked Kerosene[R]. AIAA 2005-3714.
[13] Yu G, Fan X J, Li J G, et al. Experimental Study on Combustion of Thermally-Cracked Kerosene in Model Supersonic Combustors[R]. AIAA 2006-4514.
[14] Yu G, Li J G, Yang S R, et al. Characteristics of Kerosene Combustion in Supersonic Flow Using Effervescent Atomization[R]. AIAA 2002-5225.
[15] Helfrich T M, Schauer F R, Bradley R P, et al. Evaluation of Catalytic and Thermal Cracking in a JP-8 Fueled Pulsed Detonation Engine[R]. AIAA 2007-235.
[16] Zhong F Q, Fan X J, Yu G, et al. Thermal Cracking and Heat Sink Capacity of Aviation Kerosene Under Supercritical Conditions[J]. Journal of Thermophysics and Heat Transfer, 2011, 25(3): 450-456.
[17] Zhong F Q, Fan X J, Yu G, et al. Thermal Cracking of Aviation Kerosene for Scramjet Applications[J]. Science in China Series E: Technological Sciences, 2009, 52(9): 2644-2652.
[18] Gascoin N, Abraham G, Gillard P. Synthetic and Jet Fuels Pyrolysis for Cooling and Combustion Applications[J]. Journal of Analytical and Applied Pyrolysis, 2010, 89: 294-306.
[19] Wang Z, Guo Y S, Lin R S. Pyrolysis of Hydrocarbon Fuel ZH-100 Under Different Pressures[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85: 534-538.
[20] Xian X C, Liu G Z, Zhang X W, et al. Catalytic Cracking of n-Dodecane Over HZSM-5 Zeolite Under Supercritical Conditions: Experiments and Kinetics[J]. Chemical Engineering Science, 2010, 65: 5588-5604.
[21] Sun M B, Zhong Z, Liang J H, et al. Experimental Investigation of a Supersonic Model Combustor with Distributed Injection of Supercritical Kerosene[J]. Journal of Propulsion and Power, 2014, online: DOI: 10.2514/2511.B35169.
[22] Sun M B, Gong C, Zhang S P, et al. Spark Ignition Process in a Scramjet Combustor Fueled by Hydorgen and Equipped with Multi-Cavities at Mach 4 Flight Condition[J]. Experimental Thermal and Fluid Science, 2012, 43: 90-96.
[23] 张建强, 钟战, 丁猛, 等. 煤油加热器螺旋管内煤油传热特性分析[J]. 推进技术, 2014, 35(3): 372-377. (ZHANG Jian-qiang, ZHONG Zhan, DING Meng, et al. Analysis of Heat Transfer Characteristics for Kerosene in Helical Tube of Kerosene Heater[J]. Journal of Propulsion Technology, 2014, 35(3): 372-377.)
[24] 张建强, 钟战, 丁猛, 等. 燃烧加热型煤油加热器工作特性试验[J]. 国防科技大学学报, 2013, 35(4): 30-34.
[25] 范学军, 俞刚. 大庆RP-3航空煤油热物性分析[J]. 推进技术, 2006, 27(2): 187-192. (FAN Xue-jun, YU Gang. Analysis of Thermophysical Properties of Daqing RP-3 Aviation Kerosene[J]. Journal of Propulsion Technology, 2006, 27(2): 187-192.)
[26] Huber M L. NIST Standard Reference Database 4-NIST Thermophysical Properties of Hydrocarbon Mixtures Database[M]. Gaithersburg: National Institute of Standard, 2007.
[27] Zhong F Q, Fan X J, Yu G, et al. Heat Transfer of Aviation Kerosene at Supercritical Conditions[J]. AIAA Journal of Thermophysics and Heat Transfer, 2009, 23(3): 543-550. * 收稿日期:2014-11-18;修订日期:2015-02-05。基金项目:国家自然科学基金(91016028;11142010);全国优秀博士学位论文作者专项资金资助项目(201257)。作者简介:钟战,男,博士,研究领域为高超声速推进技术。E-mail: zhongzhan_nudt@163.com(编辑:朱立影)
|