[1] Yang V, Anderson W E.液体火箭发动机燃烧不稳定性[M]. 张宝炯, 洪鑫, 陈杰译. 北京:科学出版社, 2001.
[2] Rupe J H. The Liquid-Phase Mixing of a Pair of Impinging Streams[R]. Progress Report, 20-195.
[3] Heidman M F, Priem R J, Humphrey J C. A Study of Sprays Formed by Impinging Jets[R]. NACA TN 3835.
[4] Dombrowski N, Hooper P C. A Study of the Sprays Formed by Impinging Jets in Laminar and Turbulent Flow[J]. Journal of Fluid Mechanics, 1964, 8(3): 392-400.
[5] Wei-Hsiang Lai, Tzu-Hong Huang, Tsung-Leo Jiang. Effects of Fluid Properties on the Characteristics of Impinging-Jet Sprays[J]. Atomization and Sprays, 2005, 15: 457-468.
[6] 张蒙正, 张泽平, 李鳌, 等. 两股互击式喷嘴雾化性能实验研究[J]. 推进技术, 2000, 21(1): 57-59. (ZHANG Meng-zheng, ZHANG Ze-ping, LI Ao, et al. Experimental Research on Spray Properties of Unlike Impinging Injectors[J]. Journal of Propulsion Technology, 2000, 21(1): 57-59.)
[7] 刘晓伟, 胡伟, 曹晶, 等. 鲁泊数和孔径比对直流互击式喷注器性能的影响[J]. 火箭推进, 2010, 36(3): 24-27.
[8] Marco Arienti, Xiaoyi Li, Marios C Soteriou, et al. Coupled Level-Set /Volume-of-Fluid Method for the Simulation of Liquid Atomization in Propulsion Device Injectors[R]. AIAA 2010-7136.
[9] Dongjun Ma, Xiaodong Chen, Prashant Khare, et al. Atomization Patterns and Breakup Characteristics of Liquid Sheet Formed by Impinging Jets[R]. AIAA 2011-97.
[10] Xiaodong Chen, Dongjun Ma, Vigor Yang. Mechanism Study of Impact Wave in Impinging Jets Atomizaiton[R]. AIAA 2012-1089.
[11] 强洪夫, 刘虎, 陈福振, 等. 基于SPH方法的射流撞击仿真[J]. 推进技术, 2012, 33(3): 424-429. (QIANG Hong-fu, LIU Hu, CHEN Fu-zhen, et al. Simulation on Jet Impingement Based on SPH Method[J]. Journal of Propulsion Technology, 2012, 33(3): 424-429.)
[12] 刘昌波, 雷凡培, 周立新. 两股湍流射流撞击雾化过程的数值研究[J]. 推进技术, 2014, 35(12): 1669-1678. (LIU Chang-bo, LEI Fan-pei, ZHOU Li-xin. Primary Atomization Simulations of Two Turbulent Impinging Jets[J]. Journal of Propulsion Technology, 2014, 35(12): 1669-1678.)
[13] Popinet S. Gerris: a Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries[J]. Journal of Computational Physics, 2003, 190(2): 572-600.
[14] Popinet S. An Accurate Adaptive Solver for Surface-Tension-Driven Interfacial Flows[J]. Journal of Computational Physics, 2009, 228(16): 5838-5866.
[15] Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
[16] 张磊. 界面不稳定性的数值模拟[D]. 合肥:中国科技大学, 2003.
[17] 张德良. 计算流体力学教程[M]. 北京:高等教育出版社, 2010.
[18] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5): 563-589.
[19] Boris J P, Grinstein E F, Oran E S, et al. New Insights into Large-Eddy Simulation[R]. AD-A249 424.
[20] 王振国. 液体火箭发动机燃烧过程建模与数值仿真[M]. 北京:国防工业出版社, 2012.
[21] 伊吉明, 白富强, 常青, 等. 撞击式射流速度特性及液滴粒度特性的试验[J]. 内燃机学报, 2013, 31(6): 519-524.
[22] 曹建明. 液体喷雾学[M]. 北京:北京大学出版社,2013.* 收稿日期:2014-10-18;修订日期:2015-01-20。基金项目:国家重大基础研究项目(613193)。作者简介:李佳楠,男,硕士生,研究领域为液体火箭发动机喷雾燃烧。E-mail: 2008nwpu@163.com(编辑:朱立影)
|