[1] Manzella D, Jankovsky R, Elliott F, et al. Hall Thruster Plume Measurements on-Board the Russian Express Satellites[R]. NASA/TM-2001-211217.
[2] Sitnikova N, Volkov D, Maximov I, et al. Hall Effect Thruster Interactions Data from the Russian Express-A2 and Express-A3 Satellites[R]. NASA/CR-2003-212005.
[3] 张天平, 唐福俊, 田华兵, 等. 电推进航天器的特殊环境及其影响[J]. 航天器环境工程, 2007, 24(2):88-94.
[4] 张郁. 电推进技术的研究应用现状及其发展趋势[J]. 火箭推进, 2005, 31(2): 27-36.
[5] Colbert TS, Day M, Fischer G, et al. Plan and Status of the Development and Qualification Program for Stationary Plasma Thruster[C]. Monterey: Joint Propulsion Conference and Exhibit, 1993.
[6] 田立成, 龙建飞, 郭宁, 等. 卫星敏感区域霍尔推力器束流沉积污染模型[J]. 真空科学与技术学报, 2013, 33(9): 883-887.
[7] 田立成, 郭宁, 龙建飞, 等. LHT-100霍尔推力器宽功率范围工作实验研究[J]. 推进技术, 2014, 35(9): 1283-1289. (TIAN Li-cheng, GUO Ning, LONG Jian-fei, et al. Experimental Study of LHT-100 Hall Thruster Operation in the Wide Power Range[J]. Journal of Propulsion Technology, 2014, 35(9): 1283-1289.)
[8] Walker R M L, Gallimore A D. Hall Thruster Cluster Operation with a Shared Cathode[J]. Journal of Propulsion and Power, 2007, 23(3): 528-536.
[9] Linnell J A, Gallimore A D. Efficiency Analysis of a Hall Thruster Operating with Krypton and Xenon[J]. Journal of Propulsion and Power, 2006, 22(6): 1402-1418.
[10] Book C F, Walker R M L. Effect of Anode Temperature on Hall Thruster Performance[J]. Journal of Propulsion and Power, 2010, 26(5): 1036-1044.
[11] Ross J L, Sommerville J D, King L B. Energy-Loss Mechanisms of a Low-Discharge-Voltage Hall Thruster[J]. Journal of Propulsion and Power, 2010, 26(6): 1312-1317.
[12] 韩轲, 江滨浩, 纪延超. 霍尔效应推力器放电双稳态机理研究[J]. 物理学报, 2012, 61(7).
[13] Morozov A I, Savelyev V V. Fundamentals of Stationary Plasma Thruster Theory[M]. Springer US: Reviews of Plasma Physics, 2000.
[14] Hruby V, Pote B, Gamero-[Castano] M, et al. Hall Thrusters Operating in Pulsed Mode[C]. Pasadena California: 27th International Electric Propulsion Conference, 2001.
[15] Gray H, Provost S, Glogowski M, et al. Inmarsat 4F1 Plasma Propulsion System Initial Flight Operations[C]. Princeton: 29th International Electric Propulsion Conference, 2005.
[16] Arhipov B A , Krochak L Z, Kudriavcev S S, et al. Investigation of the Stationary Plasma Thruster (SPT-100) - Characteristics and Thermal Maps at the Raised Discharge Power[R]. AIAA 98-3791.
[17] Day M, Maslennikov N, Randolph T, et al. SPT-100 Subsystem Qualification Status[R]. AIAA 96-2713.
[18] Lyszyk M, Klinger E, Secheresse O, et al. PPS 1350 Plasma Thruster Qualification Status[C]. Amsterdam Netherlands: 50th International Astronautical Congress, 1999.
[19] Garner C E, Brophy J R, Polk J E, et al. Experimental Evaluation of Russian Anode Layer Thrusters[R]. AIAA 94-3010.
[20] Brophy J R, Barnett J W, Sankovic J M, et al. Performance of the Stationary Plasma Thruster: SPT-100[R]. AIAA 92-3155.
[21] Sang-Wook Kim, Alcc D Gallimorc. Plume Study of a 1.35kW SPT-100 Using an E×B Probe[R]. AIAA 99-2423.
[22] King L B, Gallimore A D. Mass Spectral Measurements in the Plume of a SPT-100 Hall Thruster[J]. Journal of Propulsion and Power, 2000, 16(6): 1086-1092.
[23] Kim V. Main Physical Features and Processes Determining the Performance of Stationary Plasma Thrusters[J]. Journal of Propulsion and Power, 1998, 14(5): 736-743.
[24] Morozov A I, Savelyev V V. Fundamentals of Stationary Plasma Thruster Theory[M]. Springer US: Reviews of Plasma Physics, 2000. * 收稿日期:2014-11-16;修订日期:2015-01-07。基金项目:重点实验室基金(9140C5504041001)。作者简介:田立成,男,硕士,工程师,研究领域为等离子体浸没离子注入材料改性研究、离子电推进和霍尔电推进等空间特种 推进理论与实验技术研究、航天器充放电理论与实验技术研究等。E-mail: tlc1676@163.com(编辑:梅瑛)
|