[1] Papamoschou D, Roshko A. The Compressible Turbulent Shear Layer: an Experimental Study[J]. Journal of Fluid Mechanics,1988,197: 453-477.
[2] Huang W, Liu W D, Li S B, et al. Influences of the Turbulence Model and the Slot Width on the Transverse Slot Injection Flow Field in Supersonic Flows[J]. Acta Astronautica, 2012, 73: 1-9.
[3] Huang W, Yang J, Yan L. Multi-Objective Design Optimization of the Transverse Gaseous Jet in Supersonic Flows[J]. Acta Astronautica, 2014, 93: 13-22.
[4] 孙得川, 蔡体敏. 超声速流动中横向射流流场的影响参数[J]. 推进技术, 2001, 22(2). (SUN De-chuan, CAI Ti-min. Effecting Parameters of Supersonic Flowfield with Secondary Injection[J]. Journal of Propulsion Technology, 2001, 22 (2): 147-150.)
[5] 汪洪波, 孙明波, 范周琴, 等. 支板喷射超声速湍流燃烧的大涡模拟[J]. 推进技术, 2012, 33(4). (WANG Hong-bo, SUN Ming-bo, FAN Zhou-qin, et al. Large Eddy Simulation of Supersonic Turbulent Combustion with a Strut Injector[J]. Journal of Propulsion Technology, 2012, 33 (4): 552-558.)
[6] Lee S H. Mixing Augmentation with Cooled Pylon Injection in a Scramjet Combustor[J]. Journal of Propulsion and Power, 2012, 28(3): 477-485.
[7] Sujith S, Muruganandam T M, Kurian J. Effect of Trailing Ramp Angles in Strut-Based Injection in Supersonic Flow[J]. Journal of Propulsion and Power, 2013, 29 (1): 66-78.
[8] 范周琴, 刘卫东, 林志勇, 等. 支板喷射超声速燃烧火焰结构实验[J]. 推进技术, 2012, 33(6). (FAN Zhou-qin, LIU Wei-dong, LIN Zhi-yong, et al. Experimental Investigation of Supersonic Combustion Flame Structure with Strut Injectors[J]. Journal of Propulsion Technology, 2012, 33(6): 923-927.)
[9] Bogdanoff D W. Advanced Injection and Mixing Techniques for Scramjet Combustors[J]. Journal of Propulsion and Power, 1994, 10 (2): 183-190.
[10] Babinsky H, Ogawa H. SBLI Control for Wings and Inlets[J]. Shock Waves, 2008, 18(2): 89-96.
[11] 王健, 李应红, 张百灵. 亚声速进气道出口流场畸变控制研究[J]. 推进技术, 2010, 31(2). (WANG Jian, LI Ying-hong, ZHANG Bai-ling. Investigation on Flow Distortion Control of a Subsonic Inlet[J]. Journal of Propulsion Technology, 2010, 31(2): 143-146.)
[12] Babinsky H, Li Y, Ford C W P. Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions[J]. Aiaa Journal, 2009, 47(3): 668-675.
[13] Wang B, Liu W D, Zhao Y X, et al. Experimental Investigation of the Micro-Ramp Based Shock Wave and Turbulent Boundary Layer Interaction Control[J]. Physics of Fluids, 2012, 24(5): 14.
[14] Zaman K, Rigby D L, Heidmann J D. Inclined Jet in Crossflow Interacting with a Vortex Generator[J]. Journal of Propulsion and Power, 2010, 26(5): 947-954.
[15] Saravanan G, Suresh C. Numerical Simulation of Mixing Enhancement in Scramjet Using Micro Vortex Generator[J]. Procedia Engineering, 2012, 38(10): 3969-3976.
[16] Zhao Y, Yi S, Tian L, et al. The Fractal Measurement of Experimental Images of Supersonic Turbulent Mixing Layer[J]. Science in China, Series G: Physics, Mechanics and Astronomy, 2008, 51(8): 1134-1143.
[17] Zhao Y, Yi S, Tian L, et al. Supersonic Flow Imaging Via Nanoparticles[J]. Science in China Series E: Technological Sciences, 2009, 52(12): 3640-3648.
[18] Yi S, He L, Zhao Y, et al. a Flow Control Study of a Supersonic Mixing Layer Via NPLS[J]. Science in China Series G-Physics Mechanics & Astronomy, 2009, 52(12): 2001-2006.
[19] Yi S, Tian L, Zhao Y, et al. Aero-Optical Aberration Measuring Method Based on NPLS and Its Application[J]. Chinese Science Bulletin, 2010, 55(31): 3545-3549.
[20] Wang D P, Xia Z X, Zhao Y X, et al. Imaging of the Space-Time Structure of a Vortex Generator in Supersonic Flow[J]. Chinese Journal of Aeronautics, 2012, 25(1): 57-63.
[21] Tian L, Yi S, Zhao Y, et al. Study of Density Field Measurement Based on NPLS Technique in Supersonic Flow[J]. Science in China, Series G: Physics, Mechanics and Astronomy, 2009, 52(9): 1357-1363.(编辑:张荣莉) * 收稿日期:2014-12-24;修订日期:2015-02-28。基金项目:国家自然科学基金(11472304)。作者简介:赵延辉,男,博士生,研究领域为高超声速推进技术。E-mail: mj311840@126.com
|