[1] Yannick Muller. Secondary Air System Model for Integrated Thermomechanical Analysis of a Jet Engine[R].ASME 2008-GT-50078.
[2] Kutz K J, Speer T M. Simulation of the Secondary Air System of Aero Engines[J]. ASME Journal of Turbomachinery, 1994, 116(2): 306-315.
[3] Dittmann M, Dullenkopf K, Wittig S. Discharge Coefficients of Rotating Short Orifices with Radiused and Chamfered Inlets[R]. ASME 2003-GT-38314.
[4] Wittig S, Kim S, Jakoby R. Experimental and Numerical Study of Orifice Discharge Coefficients in High-Speed Rotating Disks [J]. ASME Journal of Turbomachinery, 1996, 118(2): 400-407.
[5] Idris A, Pullen K, Barnes D. An Investigation into the Flow within Inclined Rotating Orifices and the Influence of Incidence Angle on the Discharge Coefficient[J]. Journal of Power and Energy, 2004, 218(1): 55-69.
[6] 刘高文, 李碧云, 蒋兆午, 等. 预旋角度对预旋孔流动特性的影响[J]. 推进技术, 2012, 33(5): 740-746. (LIU Gao-wen, LI Bi-yun, JIANG Zhao-wu, et al. Effects of Pre-Swirl Angle on Flow Characteristics of Pre-Swirl Nozzle[J]. Journal of Propulsion Technology, 2012, 33(5): 740-746.)
[7] Rhode J E, Richards H T, Metger G W. Discharge Coefficients for Thick Plate Orifices with Approach Flow Perpendicular and Inclined to Orifice Axis[R]. NASA-TN-D-5467, 1969.
[8] Alexious A, Hills N J, Long C A, et al. Discharge Coefficients for Flow through Holes Normal to a Rotating Shaft [J]. International Journal of Heat and Fluid Flow, 2000, 21(6): 701-709.
[9] Dittmann M, Geis T, Schramm V, et al. Discharge Coefficients of a Preswirl System in Secondary Air Systems[J]. ASME Journal of Turbomachinery, 2002, 124(1): 119-124.
[10] Sousek J, Pfitzner M, Niehuis R. Experimental Study of Discharge Coefficients of Radial Orifices in High-Speed Rotating Shafts[R]. ASME 2010-GT-22691.
[11] Sousek J, Niehuis R, Pfitzner M. Experimental and Numerical Investigation of the Flow Field at Radial Holes in High-Speed Rotating Shafts[J]. ASME Journal of Turbomachinery, 2014, 136(8): 1-13.
[12] Huning M. Comparison of Discharge Coefficients Measurements and Correlations for Orifices with Cross-Flow and Rotation[J]. ASME Journal of Turbomachinery, 2014, 132(3): 1-10.
[13] 朱鹏飞, 刘振侠, 任国哲, 等. 航空发动机管路系统流动与换热的仿真平台[J]. 推进技术, 2014, 35(17): 1523-1529. (ZHU Peng-fei, LIU Zhen-xia, REN Guo-zhe, et al. Simulation Platform of Aero-Engine Pipeline System on Flow and Heat Transfer[J]. Journal of Propulsion Technology, 2014, 35(17): 1523-1529.
[14] Maeng D J, Lee J S, Jakoby R. Characteristics of Discharge Coefficient in a Rotating Disk System[J]. ASME Journal of Gas Turbines and Power, 1999, 121(4): 663-669.
[15] Miller R W. Flow Measurement Engineering Handbook [M]. New York: McGraw-Hill, 1996.
[16] Alexiou A, Mathioudakis K. Secondary Air System Component Modeling for Engine Performance Simulations[J]. ASME Journal of Engineering for Gas Turbines and Power, 2009, 131(2): 1-9.
[17] Carlen C D. An Experimental Investigation of Fluid Flow through Square Edged Orifices Located in a Rotating Disk[D]. Ohio: Air Force Institute of Technology, 1965.
[18] Huning M. Comparison of Discharge Coefficients Measurements and Correlations for Several Orifice Designs with Cross-Flow and Rotation Around Several Axes[R]. ASME 2008-GT-50976.(编辑:梅瑛) * 收稿日期:2014-12-17;修订日期:2015-01-26。作者简介:张丽芬,女,博士,讲师,研究领域为航空发动机发动机结冰、润滑系统、内流气动力学。 E-mail: zhanglifen@nwpu.edu.cn通讯作者:刘振侠,男,博士,教授,研究领域为航空发动机润滑系统、空气系统、防冰系统。E-mail: zxliu@nwpu.edu.cn
|