[1] Chung HS, Chen CSH, Kremer RA, et al. Recent Developments in High-Energy Density Liquid Hydrocarbon Fuels[J]. Energy & Fuels, 1999, 13(3): 641-649.
[2] Wilson GR, Edwards T, Corporan E, et al. Certification of Alternative Aviation Fuels and Blend Components[J]. Energy & Fuels, 2013, 27(2): 962-966.
[3] Hui X, Kumar K, Sung CJ, et al. Experimental Studies on the Combustion Characteristics of Alternative Jet Fuels[J]. Fuel, 2012, 98(1): 176-182.
[4] Sibi MG, Singh B, Kumar R, et al. Single-Step Catalytic Liquid-Phase Hydroconversion of DCPD into High Energy Density Fuel exo-THDCPD[J]. Green Chemistry, 2012, 14(2): 976-983.
[5] 邹吉军, 张香文, 王莅, 等. 高密度液体碳氢燃料合成及应用进展[J]. 含能材料, 2007, 15(4): 411-415.
[6] 邹吉军, 郭成, 张香文, 等. 航天推进用高密度液体碳氢燃料:合成与应用[J]. 推进技术, 2014, 35(10): 1419-1425. (ZOU Ji-jun, GUO Cheng, ZHANG Xiang-wen, et al. High-Density Liquid Hydrocarbon Fuels for Aerospace Propulsion: Synthesis and Application[J]. Journal of Propulsion Technology, 2014, 35(10): 1419-1425.)
[7] Huang MY, Wu JC, Shieu FS, et al. Isomerization of Endo-Tetrahydrodicyclopentadiene over Clay-Supported Chloroaluminate Ionic Liquid Catalysts[J]. Journal of Molecular Catalysis A-Chemical, 2010, 315(1): 69-75.
[8] Kim J, Han J, Kwon TS, et al. Oligomerization and Isomerization of Dicyclopentadiene over Mesoporous Materials Produced from Zeolite Beta[J]. Catalysis Today, 2014, 232(1): 69-74.
[9] Zou J-J, Xiong Z, Zhang X, et al. Kinetics of Tricyclopentadiene Hydrogenation over Pd-B/γ-Al2O3 Amorphous Catalyst[J]. Industrial & Engineering Chemistry Research, 2007, 46(13): 4415-4420.
[10] Li Y, Zou J-J, Zhang X, et al. Product Distribution of Tricyclopentadiene from Cycloaddition of Dicyclopentadiene and Cyclopentadiene: A Theoretical and Experimental Study[J]. Fuel, 2010, 89(9): 2522-2527.
[11] Wang L, Zhang X, Zou J-J, et al. Acid-Catalyzed Isomerization of Tetrahydrotricyclopentadiene: Synthesis of High-Energy-Density Liquid Fuel[J]. Energy & Fuels, 2009, 23(5): 2383-2388.
[12] Wang L, Zou J-J, Zhang X, et al. Rearrangement of Tetrahydrotricyclopentadiene Using Acidic Ionic Liquid: Synthesis of Diamondoid Fuel[J]. Energy & Fuels, 2011, 25(4): 1342-1347.
[13] 王磊, 张香文, 邹吉军, 等. 密度大于1的高密度液体碳氢燃料合成及复配研究[J]. 含能材料, 2009, 17(2): 157-160.
[14] 张远君. 金属推进燃料的研究进展[J]. 推进技术, 1981, 2(3): 66-74.
[15] Perez JPL, McMahon BW, Anderson SL. Functionalization and Passivation of Boron Nanoparticles with a Hypergolic Ionic Liquid[J]. Journal of Propulsion and Power, 2013, 29(2): 489-495.
[16] Yetter RA, Risha GA, Son SF. Metal Particle Combustion and Nanotechnology[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1819-1838.
[17] E XTF, Zhi X, Zhang Y, et al. Jet Fuel Containing Ligand-Protecting Energetic Nanoparticles: A Case Study of Boron in JP-10[J]. Chemical Engineering Science, 2015, 129(16): 9-13.
[18] Cui Y, Zhao S, Tao Do, et al. Synthesis of Size-Controlled and Discrete Core-Shell Aluminum Nanoparticles with a Wet Chemical Process[J]. Materials Letters, 2014, 121(1): 54-57.
[19] Guo Y, Yang Y, Fang W, et al. Resorcinarene-Encapsulated Ni-B Nano-Amorphous Alloys Forquasi-Homogeneous Catalytic Cracking of JP-10[J]. Applied Catalysis A-General, 2014, 469(17): 213-220.
[20] XTF E, Zhang Y, Zou J-J, et al. Oleylamine-Protected Metal (Pt, Pd) Nanoparticles for Pseudohomogeneous Catalytic Cracking of JP-10 Jet Fuel[J]. Industrial & Engineering Chemistry Research, 2014, 53(31): 12312-12318.
[21] 王方, 鄂秀天凤, 邹吉军, 等. 油溶性钯纳米颗粒催化高密度燃料点火燃烧研究[J]. 推进技术, 2016, 37(1). (WANG Fang, E Xiu-tian-feng, ZOU Ji-jun, et al. Hydrocarbon Fuel-Soluble Palladium Nanoparticles for Catalytic Combustion of High Density Fuel[J]. Journal of Propulsion Technology, 2016, (1).)
[22] Mandilas C, Karagiannakis G, Konstandopoulos AG, et al. Study of Basic Oxidation and Combustion Characteristics of Aluminum Nanoparticles under Engine Like Conditions[J]. Energy & Fuels, 2014, 28(5): 3430-3441. * 收稿日期:2015-01-15;修订日期:2015-03-20。基金项目:装备预研项目(625010304)。作者简介:鄂秀天凤,女,硕士生,研究领域为航天燃料添加剂。E-mail: 512912355@qq.com通讯作者:张香文,男,博士,教授,研究领域为航天燃料化学与技术。E-mail: zhangxiangwen@tju.edu.cn(编辑:张荣莉)
|