[1] Howell R J. Wake Separation Bubble Interactions in Low Reynolds Number Turbomachinery[D]. Cambridge: Cambridge University, 1999.
[2] Schobeiri M T, O?ztu?rk B. Experimental Study of the Effect of Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Reattachment Along the Surface of a Low Pressure Turbine Blade[J]. ASME Journal of Turbomachinery, 2004, 126(4): 663-676.
[3] Curtis E M, Hodson H P, Banieghbal M R, et al. Development of Blade Profiles for Low-Pressure Turbine Applications[J]. ASME Journal of Turbomachinery, 1997, 119(3): 531-538.
[4] Hourmouziadis J. Aerodynamic Design of Low Pressure Turbines[R]. AGARD Lecture Series, 1989.
[5] Brunner S, Fottner L. Comparison of Two Highly Loaded Low Pressure Turbine Cascades under the Influence of Wake-Induced Transition[R]. ASME GT-2000-268.
[6] Teusch R, Brunner S, Fottner L, et al. The Influence of Multimode Transition Initiated by Periodic Wakes on the Profile Loss of a Linear Compressor Cascade[R]. ASME GT-2000-271.
[7] Haselbach F, Schiffer H P, Horsman M, et al. The Application of Ultra High Lift Blade in the BR715 LP Turbine[J]. ASME Journal of Turbomachinery, 2002, 124(1): 45-51.
[8] 陈浮, 陆华伟, 顾中华, 等. 轴向间隙对压气机时序效应影响之一:总性能[J]. 工程热物理学报, 2006, 27(2).
[9] 陈浮, 陆华伟, 刘华坪, 等. 轴向间隙对压气机时序效应影响之二:截面特性[J]. 工程热物理学报, 2006, 27(5).
[10] 王掩刚, 刘波, 管继伟, 等. 多级压气机非定常流场数值分析[J]. 工程热物理学报, 2007, 27(1).
[11] 乔渭阳, 赵磊, 罗华玲, 等. 低雷诺数涡轮叶片边界层转捩及分离特性测量[J]. 推进技术, 2012, 33(6). (QIAO Wei-yang, ZHAO Lei, LUO Hua-ling, et al. Measurement of the Transition and Separation for Turbine Blade Boundary Layer with Low-Reynolds Number[J]. Journal of Propulsion Technology, 2012, 33(6).)
[12] 罗华玲, 乔渭阳. 低压涡轮叶型边界层相互作用的数值模拟[J]. 航空动力学报, 2006, 21(6).
[13] Brian R McAuliffe, Steen A Sjolander. Active Flow Control Using Steady Blowing for a Low-Pressure Turbine Cascade[J]. ASME Journal of Turbomachinery, 2004, 126(4): 1223-1235.
[14] Zhang X F, Vera M, Hodson H P, et al. Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: Low-Speed Investigation[J]. ASME Journal of Turbomachinery, 2005, 128(3): 517-527.
[15] Volino R J. Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generator Jets[J]. ASME Journal of Turbomachinery, 2003, 125(4): 765-777.
[16] Huang J, Corke T C, Thomas F O. Plasma Actuators for Separation Control of Low Pressure Turbine Blades[R]. AIAA Journal of Power and Propulsion, 2006, 44(1): 51-57.
[17] Lake J P, King P I, Rivir R B. Reduction of Separation Losses on a Turbine Blade with Low Reynolds Number[R]. AIAA 99-0242.
[18] Ramesh O N, Hodson H P, Harvey N W. Separation Control in Ultra High Lift Airfoils by Unsteadiness and Surface Roughness[C]. Bangalore: 15th International Symposium on Airbreathing Engines, 2001.
[19] Vera M, Zhang X F, Hodson H, et al. Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: High-Speed Validation[J]. ASME Journal of Turbomachinery, 2006, 129(2): 340-347.
[20] Lorenz M, Schulz A, Bauer H J. Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade—Part II: Aerodynamic Losses[J]. ASME Journal of Turbomachinery, 2011, 134(4): 041007-041007-10.
[21] Francesco Montomoli, Howard Hodson, Frank Haselbach. Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers[J]. ASME Journal of Turbomachinery, 2010, 132(3): 031018-031018-9.
[22] Marco Montis, Reinhard Niehuis, Andreas Fiala. Aerodynamic Measurements on a Low Pressure Turbine Cascade with Different Levels of Distributed Roughness[R].ASME GT 2011-45015.
[23] 王松, 王国辉, 韩青, 等. 叶片积垢对压气机性能的衰退影响[J]. 哈尔滨工程大学学报, 2014, 35(12).
[24] 李冬, 樊照远, 张娟, 等. 压气机叶片粗糙度对其性能衰退的影响研究[J]. 航空发动机, 2009, 35(5).
[25] Abuaf N, Bunker R S, Lee C P. Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils[J]. ASME Journal of Turbomachinery, 1998, 120(3): 522-529.
[26] Coull J D, Thomas R L, Hodson H P.Velocity Distributions for Low Pressure Turbines[J]. ASME Journal of Turbomachinery, 2010, 132(4): 041006-041006-13.
[27] Maciej M Opoka, Richard L Thomas, Howard P Hodson. Boundary Layer Transition on the High Lift T106A Low-Pressure Turbine Blade with an Oscillating Downstream Pressure Field[J]. ASME Journal of Turbomachinery, 2008, 130(2): 021009-021009-10.
[28] Stieger R D. The Effects of Wakes on Separating Boundary Layers in Low Pressure Turbines[D]. Cambridge: Cambridge University, 2002.
[29] Mayle R E. The Role of Laminar-Turbulent Transition in Gas Turbine Engines[J]. ASME Journal of Turbomachinery, 1991, 113(4): 509-536.
[30] Leipold R, Boese M, Fottner L. The Influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade[J]. ASME Journal of Turbomachinery, 2000, 122(3):416-425.
[31] Koch C C, Smith L H. Loss Sources and Magnitudes in Axial-Flow Compressors[J]. Journal of Engineering for Gas Turbines & Power, 1976, 99(2): 411-424.
[32] Schlichting H, Gersten K. Boundary Layer Theory [M].Springer: 8th Revised and Enlarged Edition, 2003.
[33] Boyle R J, Senyitko R G. Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics[R]. ASME GT 2003-38580.(编辑:梅瑛) * 收稿日期:2015-12-19;修订日期:2016-02-01。基金项目:国家自然科学基金(51206163;51306176);中央高校资助项目(3122015C006;ZXH2012H004;3122015D011); 中国民航大学科研启动资金(2014QD22X;2014QD21X;2015QD02S)。作者简介:孙爽,男,讲师,博士,研究领域为航空发动机气动热力学。E-mail: okkimi@aliyun.com
|