[1] Lieuwen T, McDonell V G, Santavicca D, et al. Burner Development and Operability Issues Associated with Steady Flowing Syngas Fired Combustors[J]. Combustion Science and Technology, 2008, 180(6): 1169-1192.
[2] Dam B, Corona G, Hayder M, et al. Effects of Syngas Composition on Combustion Induced Vortex Breakdown (CIVB) Flashback in a Swirl Stabilized Combustor[J]. Fuel, 2011, 90(11): 3274-3284.
[3] Fritz J, Kroner M, Sattelmayer T. Flashback in a Swirl Burner with Cylindrical Premixing Zone[J]. Journal of Engineering for Gas Turbine and Power, 2004, 126(2): 276-283.
[4] Kr?ner M, Sattelmayer T, Fritz J, et al. Flame Propagation in Swirling Flows Effect of Local Extinction on the Combustion Induced Vortex Breakdown[J]. Combustion Science and Technology, 2007, 179(7): 1385-1416.
[5] Konle M, Kiesewetter F, Sattelmayer T. Simultaneous High Repetition Rate PIV-LIF-Measurements of CIVB Driven Flashback[J]. Experiments in Fluids, 2008, 44(4): 529-538.
[6] Kr?ner M, Fritz J, Sattelmayer T. Flashback Limits for Combustor Induced Vortex Breakdown in a Swirl Burner[R]. ASME 2002-GT-30075.
[7] Burmberger S, Hirsch C, Sattelmayer T. Design a Radial Swirler Vortex Breakdown Burner[R]. ASME 2006-GT-90497
[8] Barmina I, Desnickis A, Meijere A, et al. Active Electric Control of Emissions from Swirling Combustion[M]. Germany: Advanced Combustion and Aerothermal Technologies, NATO Science for Peace and Security Series C: Environmental Security, Springer, 2007.
[9] Shelil N, Griffiths A, Bagdanavicius A, et al. Flashback Limits of Premixed H2/CH4 Flames in a Swirl-Premixed Combustor[R]. ASME 2010-GT-23623.
[10] Noble D R, Zhang Q, Shareef A, et al. Syngas Mixture Composition Effects upon Flashback and Blowoff[R]. ASME 2006-GT-90470.
[11] Escudier M. Vortex Breakdown: Observations and Explanations[J]. Progress in Aerospace Sciences, 1988, 25(2): 189-229.
[12] Tangermann E, Pfitzner M. Numerical Investigation of Flame Flashback into Swirling Flow[R]. ASME 2008-GT-51081.
[13] Kiesewetter F, Hirsch C, Fritz J, et al. Two-Dimensional Flashback Simulation in Strongly Swirling Flows[R]. ASME 2003-GT-38395.
[14] 田晓晶, 崔玉峰, 房爱兵, 等. 预混段结构对氢燃料旋流预混燃烧诱导涡破碎回火极限影响的数值研究[J]. 中国电机工程学报, 2014, 34(8): 1276-1284.
[15] 赵选民. 试验设计方法[M]. 北京:科学出版社, 2006.
[16] 田晓晶, 崔玉峰, 邢双喜, 等. 预混段结构对旋流预混氢火焰回火形式影响的数值研究[J]. 推进技术, 2015, 36(3): 345-351. (TIAN Xiao-jing, CUI Yu-feng, XING Shuang-xi, et al. Numerical Investigation on Effect of Mixing Zone Structure on Flashback Type for Swirl-Premixed Hydrogen Flame[J]. Journal of Propulsion Technology, 2015, 36(3): 345-351.)
[17] 王维, 楚武利, 张皓光. 基于试验设计的高负荷轴流压气机叶顶喷气参数化研究[J]. 推进技术, 2014, 35(2):178-186. (WANG Wei, CHU Wu-li, ZHANG Hao-guang. Parametric Study of Tip Injection in a High-Loaded Axial Compressor Based on Design of Experiment[J]. Journal of Propulsion Technology, 2014, 35(2): 178-186.)
[18] 刘文卿. 试验设计[M]. 北京:清华大学出版社, 2004.
[19] David B, Vincent M, Peter T, et al. Flashback and Turbulent Flame Speed Measurements in Hydrogen/ Methane Flames Stabilized by a Low-Swirl Injector at Elevated Pressures and Temperatures[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(3): 031502.
[20] Syred N, Beer J. Combustion in Swirling Flows: a Review[J]. Combustion and Flame, 1974, 23(2): 143-201.
[21] Squire H B. Analysis of the Vortex Breakdown Phenomenon [M]. UK: Imperial College of Science and Technology, Aeronautics Department, 1960.
[22] Ashoke D, Sumanta A. Dynamics of Upstream Flame Propagation in a Hydrogen-Enriched Premixed Flame[J]. International Journal of Hydrogen Energy, 2012, (37): 17294-17309.(编辑:朱立影) * 收稿日期:2014-12-16;修订日期:2015-03-16。基金项目:国家自然科学基金(51306180)。作者简介:田晓晶,女,博士生,研究领域为富氢燃机燃烧室设计。E-mail: tianxiaojing@iet.cn通讯作者:崔玉峰,男,博士,副研究员,研究领域为燃气轮机燃烧室设计和稳定性。E-mail: cuiyf@iet.cn
|