[1] 杨V, 安德松W E. 液体火箭发动机燃烧不稳定性[M]. 北京:科学出版社, 2001.
[2] Durox D, Schuller T, Noiray N, et al. Rayleigh Criterion and Acoustic Energy Balance in Unconfined Self-Sustained Oscillating Flames[J]. Combustion and Flame, 2009, 156: 106-119.
[3] Eric J J, Joshua W B. The Generalized Rayleigh Criterion and other Entropic Contributions to Combustion Instability [R]. AIAA 2013-3993.
[4] Rodriguez J I. Acoustic Excitation of Liquid Fuel Droplets and Coaxial Jets[D]. Los Angeles: University of California, 2009.
[5] 刘卫东, 周进, 王振国. 振荡环境下推进剂液滴亚临界蒸发响应特性[J]. 航空动力学报, 2001, 16(1): 52-54.
[6] 苏凌宇, 刘卫东. 低频压力振荡环境下静止液滴蒸发过程的准稳态模型[J]. 推进技术, 2010, 31(3): 281-287. (SU Ling-yu, LIU Wei-dong. A Quasi-steady Model of Immobile Droplet Evaporation with Pressure Oscillation[J]. Journal of Propulsion Technology, 2010, 31(3): 281-287.)
[7] 苏凌宇, 聂万胜, 刘卫东. 低频压力振荡环境下运动液滴蒸发过程的准稳态模型[J]. 推进技术, 2011, 32(5): 670-675. (SU Ling-yu, NIE Wan-sheng, LIU Wei-dong. Quasi-Steady Model of Moving Droplet Evaporation under Low Frequency Pressure Oscillation[J]. Journal of Propulsion Technology, 2011, 32(5): 670-675.)
[8] Delplanque J P, Sirignano W A. Transcritical Liquid Oxygen Droplet Vaporization: Effect on Rocket Combustion Instability[J]. Journal of Propulsion and Power, 1996, 12(2): 349-357.
[9] Duvvur A, Chiang C H, Sirignano W A. Oscillatory Fuel Droplet Vaporization: Driving Mechanism for Combustion Instability[J]. Journal of Propulsion and Power, 1996, 12(2): 358-365.
[10] Yoann M, Hakim L, Scouflaire P, et al. Experimental Investigation of Cryogenic Flame Dynamics under Transverse Acoustic Modulations[J]. Comptes Rendus Mecanique, 2013, 341: 100-109.
[11] Lubarsky E, Hadjipanayis M, Shcherbik D, et al. Control of Tangential Instability by Asymmetric Baffle[R]. AIAA 2008-955.
[12] 赵宇炜, 杨龙滨, 葛坤, 等. 不同来流温度下单液滴燃烧的数值模拟[J]. 燃烧科学与技术, 2014, 20(1): 77-83.
[13] 聂万胜, 庄逢辰. 喷雾特性对液体火箭发动机燃烧稳定性的影响[J]. 推进技术, 2000, 21(3): 56-59. (NIE Wan-sheng, ZHUANG Feng-chen. Effect of Spray Characteristic on the Liquid Rocket Combustion Stability[J]. Journal of Propulsion Technology, 2000, 21(3): 56-59.)
[14] 罗坤, 金台, 樊建人, 等. 网格尺寸对液滴蒸发的影响[J]. 浙江大学学报, 2011, 45(12): 2176-2180.
[15] 辛娟娟, 周致富, 辛慧, 等. 单个液滴蒸发模型中不同质量传递公式的有效性分析[J]. 化工学报, 2012, 63(6): 1704-1708.
[16] SAZHIN S S. Advanced Models of Fuel Droplet Heating and Evaporation[J]. Progress in Energy and Combustion Science, 2006, 32: l62-214.
[17] Pope D N. Numerical Simulation of Convective Fuel Droplet Vaporization and Combustion in a Low Pressure Zero-Gravity Environment[D]. Lincoln: The University of Nebraska, 2001.
[18] 聂万胜, 丰松江. 液体火箭发动机燃烧动力学模型与数值计算[M]. 北京:国防工业出版社, 2011.
[19] 何博, 丰松江, 聂万胜. 对流速度对燃料液滴火焰形态及燃烧的影响[J]. 计算物理, 2013, 30(2): 194-202.
[20] Okajima S, Kumagai S. Experiment Studies on Combustion of Fuel Droplet in Flowing Air under Zero and High Gravity Condition[J]. Proceedings of the Combustion Institute, 1982, 19: 1021-1027.
[21] Hsiao G C, Hua Meng, Yang V. Pressure-Coupled Vaporization Response of N-Pentane Fuel Droplet at Subcritical and Supercritical Conditions[J]. Proceedings of the Combustion Institute, 2011, 33: 1997-2003. * 收稿日期:2015-05-27;修订日期:2015-08-06。基金项目:国家自然科学基金(91441123)。作者简介:冯伟,男,博士生,研究领域为液体火箭发动机燃烧不稳定性。E-mail: fengwei_85@163.com(编辑:张荣莉)
|