[1] Goldstein R J, Eckert R G, Burggraf F. Effects of Hole Geometry and Density on Three-Dimensional Film Cooling [J]. Journal of Heat & Mass Transfer, 1974, 17: 595-607.
[2] Thole K, Gritsch M, Schulz A, et al. Flowfield Measurements for Film-Cooling Holes with Expanded Exit [R]. ASME 96-GT-174.
[3] Giebert D, Gritsch M, Schulz A, et al. Film-Cooling from Holes with Expanded Exits: a Comparison of Computational Results with Experiments[R]. ASME 97-GT-163.
[4] Gritsch M, Schulz A, Witting S. Discharge Coefficient Measurements of Film-Cooling Holes with Expanded Exits [R]. ASME 97-GT-165.
[5] Wright LM, McClain S T, Clemenson M D. Effect of Density Ratio on Flat Plat Film Cooling with Shaped Holes Using PSP[R]. ASME 2010-GT-23053.
[6] Haven B A, Yamagata D K, Kurosaka M. Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness[R]. ASME 97-GT-45.
[7] Bunker R S. Film Cooling Effectiveness Due to Discrete Holes within a Transverse Surface Slot[R]. ASME 2002-GT-30178.
[8] Sargison J E, Lock G D, Guo S M, et al. Performance Prediction of a Converging Slot-Hole Film-Cooling Geometry[R]. ASME 2003-GT-38144.
[9] Lee C P, Brassfield S R, Bunker R S. Chevron Film Cooled Wall [P]. USA: Patent 2005/0286998A1, 2005.
[10] Rhee D H, Lee Y S, Cho H H. Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes[R]. ASME 2002-GT-30168.
[11] Nicolas J, Le Meur A, Curvature Effects on a Turbine Blade Film Cooling[R]. ASME 74-GT-156.
[12] Ito S, Goldstein R J, Eckert E R G. Film Cooling of a Gas Turbine Blade[J]. Journal of Engineering and Power, 1978, 100: 476-481.
[13] Winka J R, Anderson J B, Bogard D G, et al. Convex Curvature Effects on Film Cooling Adiabatic Effectiveness[R]. ASME 2013-GT-95243.
[14] 朱惠人, 向安定, 许都纯, 等. 涡轮叶片表面气膜冷却效率的实验研究[J]. 推进技术, 2003, 24(6): 528-531. (ZHU Hui-ren, XIANG An-ding, XU Du-chun, et al. An Experimental Investigation of Film Cooling Effectiveness on the Surface of Turbine Blade[J]. Journal of Propulsion Technology, 2003, 24(6): 528-531.)
[15] 朱惠人, 马兰, 许都纯, 等. 孔位对涡轮叶片表面气膜冷却换热系数的影响[J]. 推进技术, 2005, 26(4): 302-306. (ZHU Hui-ren, MA Lan, XU Du-chun, et al. Influences of Position of Hole Rows on Film Cooling Heat Transfer of Turbine Blade Surface[J]. Journal of Propulsion Technology, 2005, 26(4): 302-306.)
[16] 向安定, 刘松龄, 朱惠人, 等. 涡轮工作叶片表面气膜冷却效率的实验研究[J]. 推进技术, 2004, 25(1):39-43. (XIANG An-ding, LIU Song-ling, ZHU Hui-ren, et al. Film Cooling Effectiveness Measurements for Gas Holes on Blade Surface in a Turbine Cascade[J]. Journal of Propulsion Technology, 2004, 25(1): 39-43.)
[17] 朱惠人, 许都纯, 刘松龄, 等. 簸箕形排孔气膜冷却实验研究[J]. 航空学报, 1997, 18(5): 535-538.
[18] 朱惠人, 许都纯, 郭涛, 等. 气膜孔形状对排孔下游换热的影响[J]. 航空动力学报, 2001, 16(4): 360-364.
[19] 郭涛, 朱惠人, 许都纯. 双排簸箕形气膜孔下游换热研究[J]. 航空动力学报, 2009, 24(7): 1488-1492.
[20] 朱惠人, 郭涛, 许都纯. 双排簸箕形孔气膜冷却效率及其叠加算法[J]. 航空动力学报, 2006, 21(5): 814-819.
[21] 李红才, 朱惠人, 任展鹏, 等. 短周期跨声速风洞叶栅换热实验验证[J]. 西安交通大学学报, 2013, 47(9): 49-54.
[22] 朱彦伟. 短周期传热风洞气动特性模拟与控制方法研究[D]. 西安:西北工业大学, 2007.
[23] Oldfield M L G. Impulse Response Processing of Transient Heat Transfer Gauge Signals[J]. ASME Journal of Turbomachinery, 2008, 130(2): 1-9.
[24] Schwarz S G, Goldstein R J, Eckert E R G. The Influence of Curvature on Film Cooling Performance[R]. ASME 90-GT-10. (编辑:田佳莹) * 收稿日期:2015-11-29;修订日期:2016-01-06。作者简介:刘聪,男,博士生,研究领域为航空发动机高温部件强化传热及气膜冷却技术。E-mail: l2008c@aliyun.com
|