[1] 张焕好, 陈志华, 黄振贵, 等. 超声速平面混合层小激波的形成与演变[J]. 计算力学学报, 2012, 29(5): 772-778.
[2] Sandham N D, Reynolds W C. Three-Dimensional Simulations of Large Eddies in the Compressible Mixing Layer[J]. Journal of Fluid Mechanics, 1991, 224: 133-158.
[3] Vreman B, Kuerten H, Geurts B. Shocks in Direct Numerical Simulation of the Confined Three-Dimensional Mixing Layer[J]. Physics of Fluids, 1995, 7: 2105.
[4] Vreman B. Direct and Large-Eddy Simulation of the Compressible Turbulent Mixing Layer[D]. Enschede, Holland: University of Twente, 1995.
[5] Vreman B, Sandham N D, Luo K H. Compressible Mixing Layer Growth Rate and Turbulence Characteristics[J]. Journal of Fluid Mechanics, 1996, 320: 235.
[6] 傅德薰, 马延文. 时间发展平面混合流的三维演变[J]. 力学学报, 1998, 30(2): 130-137.
[7] Kourta A, Sauvage R. Computation of Supersonic Mixing Layer[J]. Physics of Fluid, 2002, 14(11): 3790-3797.
[8] Fu S, Li Q B. Numerical Simulation of Compressible Mixing Layer[J]. International Journal of Heat and Fluid Flow, 2006, 27: 895-901.
[9] 周强, 何枫, 沈孟育. 可压缩混合层中的涡结构和激波[J]. 空气动力学学报, 2010, 28(3): 245-249.
[10] Papamoschou D. Evidence of Shocklets in a Counterflow Supersonic Shear Layer[J]. Physics and Fluids, 1995, 7(2): 233-235.
[11] Rossmann T. An Experimental Investigation of High Compressibility Mixing Layer[R]. Stanford: Technical Report 94305-3032.
[12] Rossmann T, Mungal M G, Hanson R K. Acetone PLIF and Schlieren Imaging of High Compressibility Mixing Layers[R]. AIAA 2001-0290.
[13] 赵玉新, 易仕和, 何霖, 等. 超声速湍流混合层中小激波结构的实验研究[J]. 国防科技大学学报, 2007, 29(1): 12-15.
[14] 韩省思, 叶桃红, 朱旻明, 等. 应用修正的k-ε模型研究超声速H2/Air燃烧[J]. 推进技术, 2008, 29(2): 158-162. (HAN Xing-si, YE Tao-hong, ZHU Min-ming, et al. Numerical Simulation of Supersonic H2/Air Combustion Appling Modified k-ε Turbulence Model[J]. Journal of Propulsion Technology, 2008, 29(2): 158-162.)
[15] 张焕好, 陈志华, 黄振贵, 等. 亚声速等膨胀平面射流的初始流场结构[J]. 推进技术, 2012, 33(4): 591-596. (ZHANG Huan-hao, CHEN Zhi-hua, HUANG Zhen-gui, et al. Initial Flow Structures of an Iso-expanded Subsonic Plane Jet[J]. Journal of Propulsion Technology, 2012, 33(4): 591-596.
[16] Zhang H, Chen Z, Li B, et al. The Secondary Vortex Rings of a Supersonic Under Expanded Circular Jet with Low Pressure Ratio[J]. European Journal of Mechanics B/Fluids, 2014, 46: 172-180.
[17] Lombardini M, Hill D J, Pullin D I, et al. Atwood Ratio Dependence of Richtmyer-Meshkov Flows Under Reshock Conditions Using Large-Eddy Simulations[J]. Journal of Fluid Mechanics, 2011, 670: 439.
[18] Lundgren T S. Strained Spiral Vortex Model for Turbulent Fine Structure[J]. Physics of Fluids, 1982, 25: 2193.
[19] Hill D J, Pullin D I. Hybrid Tuned Center-Difference-WENO Method for Large Eddy Simulations in the Presence of Strong Shocks[J]. Journal of Computational Physics, 2004, 194: 435-450.
[20] Pantano C, Deiterding R, Hill D J. A Low Numerical Dissipation Patch Based Adaptive Mesh Refinement Method for Large-Eddy Simulation of Compressible Flows[J]. Journal of Computational Physics, 2007, 221: 63-87.
[21] Grasso F, Pirozzoli S. Shock-Wave-Vortex Interactions: Shock and Vortex Deformations and Sound Production[J]. Theoretical and Computational Fluid Dynamics, 2000, 13: 421-456.
[22] Mariani R. Compressible Vortex Loops in a Shock Tube with Helium Driver[R]. Manchester, England: Internal Seminar Series, The University of Manchester, 2011.
[23] Zhao W, Frankel S H, Mongeau L G. Effects of Trailing Jet Instability on Vortex Ring Formation[J]. Physics of Fluids, 2000, 12: 589-596.
[24] Gharib M, Rambod E, Shariff K. A Universal Timescale for Vortex Ring Formation[J]. Journal of Fluid Mechanics, 1998, 360: 121-140.
[25] Sandham N D, Reynolds W C. Three-Dimensional Simulations of Large Eddies in the Compressible Mixing Layer[J]. Journal of Fluid Mechanics, 1991, 224: 133-158.
[26] Li Q, Deng X B, Zhang H X. The Numerical Research on the Transition of the Three-Dimensional Supersonic Spatial Developing Mixing Layer when Mc=0.5[C]. Shanghai: Proceedings of the 5th International Conference on Fluid Mechanics, 2007.
[27] Inoue O, Takahashi T, Hatakeyama N. Separation of Reflected Shock Waves due to the Secondary Interaction with Vortices: Another Mechanism of Sound Generation[J]. Physics of Fluids, 2002, 14: 3733-3744. * 收稿日期:2015-02-26;修订日期:2015-04-20。基金项目:国家自然科学青年基金(11502117);中国博士后基金(2015M571757);国家自然科学基金面上项目(11272156)。作者简介:张焕好,女,博士,讲师,研究领域为超声速流动。E-mail: zhanghuanhao9@163.com(编辑:史亚红)
|