[1] Fish F E. Influence of Hydrodynamic Design and Propulsive Mode on Mammalian Swimming Energetics[J].Australian Journal of Zoology, 1993, 42(1): 79-101.
[2] Fish F E. Performance Constraints on the Maneuverability of Flexible and Rigid Biological Systems[C]. Durham: Proceedings of the Eleventh International Symposium on Unmanned Untethered Submersible Technology (UUST), UUST99, 1999: 394-406.
[3] Fish F E, Howle L E, Murray M M. Hydrodynamic Flow Control in Marine Mammals[J]. Integrative and Comparative Biology, 2008, 48(6): 788-800.
[4] Watts P, Fish F E. The Influence of Passive, Leading Edge Tubercles on Wing Performance[C]. Durham: Proceedings of Unmanned Untethered Submersible Technology (UUST), UUST01, Autonomous Undersea Systems Institute, 2001.
[5] Miklosovic D S, Murray M M, Howle L E. Experimental Evaluation of Sinusoidal Leading Edges[J]. Journal of Aircraft; Engineering Notes, 2007, 44(2): 1404-1407.
[6] Miklosovic D S, Murray M M, Howle L E. et al. Leading-Edge Tubercles Delay Stall on Humpback Whale (Megapteranovaeangliae) Flippers[J]. Phys.Fluids, 2004 16(5):L39–L42.
[7] Corsini A, Delibra G, Sheard A G. The Application of Sinusoidal Blade-Leading Edges in a Fan-Design Methodology to Improve Stall Resistance[J]. Journal of Power and Energy, 2014, 228(3): 255-271.
[8] Gruber T, Murray M M, Fredriksson D W. Effect of Humpback Whale Inspired Tubercles on Marine Tidal Turbine Blade [C]. Denver: ASME 2011 International Mechanical Engineering Congress and Exposition, 2011: 851-857.
[9] Hansen K L, Kelso R M. Performance Variations of Leading-Edge Tubercles for Distinct Airfoil Pro?les [J].AIAA Journal, 2011, 49(1): 187-196.
[10] CHEN Huang, PAN Chong, WANG JinJun. Effects of Sinusoidal Leading Edge on Delt Wing Performance and Mechanism[J]. Sci.China Tech.Sci. , 2013, 56(3):772-779.
[11] Arai H, Doi Y, Nakashima T. A Study on Stall Delay by Various Wavy Leading Edges[J]. Journal of Aero Aqua Bio-mechanisms, 2010, 1(1): 18-23.
[12] Stein B, Murray M M. Stall Mechanism Analysis of Humpback Whale Flipper Models[C]. Durham: Proceedings of Unmanned Untethered Submersible Technology (UUST), UUST05, 2005.
[13] Fish F E, Battle J M. Hydrodynamic Design of the Humpback Whale Flipper[J]. Journal of Morphology, 1995, 225(1): 51-60.
[14] Custodio D. The Effect of Humpback Whale-Like Leading Edge Protuberances on Hydrofoil Performance [D]. Worcester: Worcester Polytechnic Institute, 2007.
[15] Hasheminejad S M, Mitsudharmadi H, Winoto S H. Effect of Flat Plate Leading Edge Pattern on Structure of Streamwise Vortices Generated in Its Boundary Layer [J]. Journal of Flow Control, Measurement & Visualization, 2014, 2(1): 18-23.
[16] Bearman P W, Owen J C. Reduction of Bluff-Body Drag and Suppression of Vortex Shedding by the Introduction of Wavy Separation Lines[J]. Journal of Fluids and Structures, 1998, 12(1): 123-130.
[17] Bearman P W, Tombazis N. The Effect of Three-Dimensional Imposed Disturbances on Bluff Body Near Wake Flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49(1): 339-350.
[18] Naumann A, Morsbach M, Kramer C. The Conditions of Separation and Vortex Formation Past Cylinders[R]. AGARD Conference Proceedings No.4, Separated Flows, 1966: 539-574.
[19] 陆宏志, 徐力平. 压气机叶片的带平台圆弧形前缘 [J]. 推进技术, 2003, 24(6): 532-536. (LU Hong-zhi, XU Li-ping. Circular Leading Edge with a Flat for Compressor Blades[J]. Journal of Propulsion Technology, 2003, 24(6): 532-536.)
[20] 靳允立, 胡骏. 叶片弯掠对多级风扇气动性能的影响[J]. 推进技术, 2009, 30(1): 77-82. (JIN Yun-li, Hu Jun. Effects of Swept Curved Blade on the Performance of the Multistage Fan [J]. Journal of Propulsion Technology, 2009, 30(1): 77-82.)(编辑:梅瑛) * 收稿日期:2015-02-13;修订日期:2015-04-27。基金项目:南京航空航天大学青年科技创新基金(NS2014021)。作者简介:屠宝锋,男,博士,讲师,研究领域为风扇/压气机气动稳定性。E-mail: tubaofeng@126.com
|