[1] 樊慧明, 朱惠人, 李广超. 主流逆压力梯度下气膜孔流量系数的实验[J]. 推进技术, 2009, 30(4): 405-410. (FAN Hui-ming, ZHU Hui-ren, LI Guang-chao.Experiments of Discharge Coefficient of Film Cooling Holes under Adverse Pressure Gradient[J]. Journal of Propulsion Technology, 2009, 30(4): 405-410.)
[2] Goldstein E R G, Eckert F Burggraf. Effects of Hole Geometry and Density on Three-Dimensional Film Cooling[J]. International Journal of Heat and Mass Transfer, 1974, 17(5): 559-607.
[3] Bunker R. A Review of Shaped Hole Turbine Film Cooling Technology[J]. ASME Journal of Heat Transfer, 2005, 127(4): 441-453.
[4] 刘宁, 孙纪宁. 不同来流条件下旋转对气膜冷却的影响[J]. 推进技术, 2011, 32(5): 706-712. (LIU Ning, SUN Ji-ning. Effect of Rotation on Film Cooling under Different Inflow Conditions[J]. Journal of Propulsion Technology, 2011, 32(5): 706-712.)
[5] Ligrani P M, Ramsey A E. Film Cooling from Spanwise-oriented Holes in Two Staggered Rows[J]. Journal of Turbomachinery, 1997, 119(3): 562-567.
[6] Bell C M, Hamakawa H, Ligrani P M. Film Cooling from Shaped Holes[J]. Journal of Heat Transfer- Transactions of the ASME, 2000, 122(2): 224-232.
[7] 戴萍, 林枫. 横向槽结构对气膜冷却效果影响的数值研究[J]. 推进技术, 2011, 32(2): 253-260. (DAI Ping, LIN Feng. Numerical Investigation on the Influence of Transverse Slot Configurations on Film Cooling Effect[J]. Journal of Propulsion Technology, 2011, 32(2): 253-260.)
[8] 杨卫华, 马国锋, 张靖周, 等. 气膜冷却孔几何结构对流量系数的影响[J]. 推进技术, 2005, 26(5): 413-416. (YANG Wei-hua, MA Guo-feng, ZHANG Jing-zhou, et al. Influence of Geometrical Construction of Film Cooling Hole on Discharge Coefficient[J]. Journal of Propulsion Technology, 2005, 26(5): 413-416.)
[9] 胡娅萍, 吉洪湖. 孔阵排列疏密度对致密多孔壁冷却效果的影响[J]. 推进技术, 2005, 26(1): 28-33. (HU Ya-ping, JI Hong-hu. Effect of Porosity of Holes Array on Cooling Effectiveness of Effusion Cooling [J]. Journal of Propulsion Technology, 2005, 26(1): 28-33.)
[10] 刘高文, 刘松龄. 喷射角对涡轮叶栅端壁气膜冷却传热的影响[J]. 推进技术, 2002, 23(6): 496-499. (LIU Gao-wen, LIU Song-ling. Influence of Injection Angle on the Thermodynamic Aspects of Endwall Film-cooling in a Turbine Cascade[J]. Journal of Propulsion Technology, 2002, 23(6): 496-499.)
[11] 蔡卫军, 宋晓伟, 刘高文, 等. 小长径比直孔内的流场实验研究[J]. 推进技术, 2003, 24(5): 440-443. (CAI Wei-jun, SONG Xiao-wei, LIU Gao-wen, et al. Flow Field Measurements in Normal Hole with Low Length-to-Diameter Ratio[J]. Journal of Propulsion Technology, 2003, 24(5): 440-443.)
[12] Gritsch M , Schulz A , Wittig S. Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes with Varying Angles of Inclination and Orientation[J]. Journal of Turbomachinery, 2001, 123(4): 781-787.
[13] 裘云, 朱惠人, 倪萌, 等. 带肋壁与出流孔内流通道中肋角度对流量系数的影响[J]. 航空动力学报, 2003, 18(2): 235-238.
[14] 李广超, 朱惠人, 樊慧明. 角度和孔间距对双向扩张型孔流量系数影响的实验[J]. 航空动力学报, 2009, 24(3): 499-506.
[15] 朱惠人, 许都纯, 刘松龄, 等. 气膜孔形状对流量系数影响的实验研究[J]. 推进技术, 1998, 19(1): 42-45. (ZHU Hui-ren, XU Du-chun, LIU Song-ling, et al. The Experimental Investigation Inter Effects of Film Cooling Holes Shape on Discharge Coefficient[J]. Journal of Propulsion Technology, 1998, 19(1): 43-45.)
[16] Buaker S, Bailey C. Film Cooling Discharge Coefficient Measurements in a Turbulated Passage with Internal Crossflow[J]. ASME Journal of Turbomachiaety, 2001, 123(4): 774-780.
[17] Jing Xiaodong, Sun Xiaofeng, Wu Jingshu, et al. The Effect of Grazing Flow on the Steady State Resistance of Squared-Edge Orifices[R]. AIAA 2001-2160.
[18] Gritsch M, Schulz A, Wittig S. Method for Correlating Discharge Coefficients of Film Cooling Holes [J]. AIAA Journal, 1998, 36(6): 976-980.
[19] 曹玉璋. 航空发动机传热学[M]. 北京:北京航空航天大学出版社, 2004.
[20] Lin Y L, Shih T I P. Film Cooling over Flat Convex and Concave Surfaces[R]. AIAA 99-0344. (编辑:史亚红) * 收稿日期:2015-02-05;修订日期:2015-04-10。基金项目:航空科学基金(2014ZB53023);国家“九七三”基金(2013CB035702);霍英东教育基金会资助项目 (141053);中央高校基本科研业务费专项资金(3102014JCQ01049)。作者简介:刘存良,男,博士,副教授,研究领域为发动机高温部件冷却工作。E-mail: liucunliang@nwpu.edu.cn
|