推进技术 ›› 2016, Vol. 37 ›› Issue (9): 1631-1637.

• 气动热力学 总体 • 上一篇    下一篇

Sajben跨声速扩压器分离流动中湍流模式数值研究

闫文辉1,高 歌2   

  1. 中国航空研究院 新技术研究所,北京 100012,北京航空航天大学 能源与动力工程学院,北京 100091
  • 发布日期:2021-08-15
  • 作者简介:闫文辉,男,博士,高级工程师,研究领域为湍流模式。
  • 基金资助:
    国家自然科学基金(11402307)。

Numerical Study of Turbulence Models in Sajben Diffuser Transonic Separation Flow

  1. Chinese Aeronautical Establishment,New Technology Research Center,Beijing 100012,China and School of Jet Propulsion,Beijing University of Aeronautics and Astronautics,Beijing 100091,China
  • Published:2021-08-15

摘要: 为研究湍流模式对激波/湍流边界层干扰内流流动的影响,提高数值计算准确度,使用S-A,SST k-ω,非线性EASM k-ω,Gao-Yong四个湍流模式对Sajben扩压器内激波/湍流边界层干扰流动进行了数值计算。对流项采用Roe格式离散,扩散项采用二阶中心格式离散,离散后的控制方程用多步Runge-Kutta显示时间推进法求解。文中展示了四个湍流模式计算得到的壁面压力、速度剖面、摩阻系数等分布。计算值与实验值符合很好,四个湍流模式总体上能够较好地模拟扩压器内激波/湍流边界层干扰复杂分离流动。Gao-Yong湍流模式对分离区内的压力、速度型的模拟更加准确,而非线性EASM k-ω模式对分离再附点位置计算最理想。

关键词: 湍流模式;计算流体力学;数值模拟;激波/边界层干扰

Abstract: In order to study the effects of turbulence mode on the shockwave turbulent boundary layer interaction in internal flow and improve the accuracy of numerical simulation,numerical simulation of shockwave turbulence boundary layer interaction in Sajben diffuser flowfield is implemented based on S-A,SST k-ω,nonlinear EASM k-ω and Gao-Yong turbulence models. Convection terms and diffusion terms are calculated using Roe scheme and tow order center difference scheme,respectively. The Multi-step Runge-Kutta explicit time marching method is employed to solve space discrete control equations. Pressure distribution on the wall surface,velocity profile distribution and skin friction distribution obtained by four turbulence models are presented. The numerical results agree well with the experimental data. In general,four turbulence models work well in numerical simulation of Sajben diffuser complex separation flow. Gao-Yong turbulence model has a powerful capability to simulate pressure and velocity profile distribution,especially in separated region. Nonlinear EASM k-ω turbulence model can predict location of separation and reattachment better than others.

Key words: Turbulence model;Computational fluid dynamics;Numerical simulation;Shock wave/boundary layer interaction