[1] Marshall L, Bahm C, Corpening G, et al. Overview with Results and Lessons Learned of the X-43A Mach 10 Flight[R]. AIAA 2005-3336.
[2] 李宁, 李旭昌, 张涵, 等. 超声速燃烧火焰稳定技术及其发展综述[J]. 飞航导弹, 2014, 5: 60-67.
[3] 席文雄, 王振国, 刘卫东, 等. 双模态超燃冲压发动机点火方案对比试验[J]. 推进技术, 2013, 34(3): 383-389. (XI Wen-xiong, WANG Zhen-guo, LIU Wei-dong, et al. Experimental Comparison on the Scheme of Ignition in Dual-Mode Scramjet[J]. Journal of Propulsion Technology, 2013, 34(3): 383-389.)
[4] 韦宝禧, 欧东, 闫明磊, 等. 超燃燃烧室等离子体点火和火焰稳定性能[J]. 北京航空航天大学学报, 2012, 38(12): 1572-1576.
[5] 王苏, 崔季平, 范秉诚, 等. 促进剂对高碳数碳氢燃料点火特性的影响[J]. 实验流体力学, 2007, 21(2): 25-28.
[6] 龚景松, 杨庆涛, 候凌云, 等. 乙醇煤油混合燃料热解特性实验研究[J]. 工程热物理学报, 2009, 30(9): 1617-1619.
[7] Lifshitz A, Scheller K, Burcat A, et al. Shock-Tube Investigation of Ignition in Methane/Oxygen/Argon Mixtures[J]. Combustion and Flame, 1971, 16(3): 311-321.
[8] Ju Y, Niioka T. Ignition Simulation of Methane/Hydrogen Mixtures in a Supersonic Mixing Layer[J]. Combustion and Flame, 1995, 102(4): 462-470.
[9] Wang Jinhua, Huang Zuohua, Tang Chenglong, et al. Effect of Hydrogen Addition on Early Flame Growth of Lean Burn Natural Gas-Air Mixture[J]. International Journal of Hydrogen Energy, 2010, 35(13): 7246-7252.
[10] 夏萌, 林宇震, 张驰. 正十烷/氢气/空气点火延迟特性数值分析[J]. 中国矿业大学学报, 2014, 43(4): 721-725.
[11] Westbrook C K, Pitz W J, Herbinet O, et al. A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkane Hydrocarbons from n-Octane to n-Hexadecane[J]. Combustion and Flame, 2009, 156(1): 181-199.
[12] Hui Xin , Zhang Chi , Xia Meng, et al. Effects of Hydrogen Addition on Combustion Characteristics of n-Necane/Air Mixtures[J]. Combustion and Flame, 2014, 161: 2252-2262.
[13] Frolov S M, Medvedev S N, Basevich V Ya, et al. Self-Ignition of Hydrocarbon-Hydrogen-Air Mixtures[J]. International Journal of Hydrogen Energy, 2013, 38(1): 4177-4184.
[14] 范学军, 俞刚. 大庆RP-3航空煤油热物性分析[J]. 推进技术, 2006, 27(2): 187-192. (FAN Xue-jun, YU Gang. Analysis of Thermophysical Properties of Daqing RP-3 Aviation Kerosene[J]. Journal of Propulsion Technology, 2006, 27(2): 187-192.)
[15] 曾文, 李海霞, 马洪安, 等. RP-3航空煤油模拟替代燃料的化学反应详细机理[J]. 航空动力学报, 2014, 29(12): 2810-2816.
[16] 曾文, 李海霞, 马洪安, 等. RP-3航空煤油模拟替代燃料的化学反应简化机理[J]. 推进技术, 2014, 35(8): 1139-1145. (ZENG Wen, LI Hai-xia, MA Hong-an, et al. Reduced Chemical Reaction Mechanism of Surrogate Fuel for RP-3 Kerosene[J]. Journal of Propulsion Technology, 2014, 35(8): 1139-1145.)
[17] Jachimowski C J. An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion[R]. NASA TP-2791.
[18] Gersen S, Anikin N B, Mokhov A V, et al. Ignition Properties of Methane/Hydrogen Mixtures in a Rapid Compression Machine[J]. International Journal of Hydrogen Energy, 2008, 33(7): 1957-1964.
[19] Slack M, Grillo A. Investigation of Hydrogen-Air Ignition Sensitized by Nitric Oxide and by Nitrogen Dioxide[R]. NASA CR-2896. (编辑:史亚红) * 收稿日期:2015-08-21;修订日期:2015-10-28。基金项目:国家自然科学基金(51376133);辽宁省自然科学基金(2013024009); 辽宁省博士启动基金(20141076);沈阳市科技攻关项目(F13024200)。作者简介:刘宇,男,讲师,博士,研究领域为航空发动机燃料燃烧实验与化学反应机理。 E-mail: liuyu_201409@163.com通讯作者:曾文,教授,博士后,研究领域为航空发动机燃烧过程与排放物生成的数值研究。E-mail: zengwen928@sohu.com
|