[1] Dagaut P, Cathonnet M. The Ignition, Oxidation, and Combustion of Kerosene: A Review of Experimental and Kinetic Modeling[J]. Progress in Energy and Combustion Science, 2006, 32(1): 48-92.
[2] Pitz W J, Mueller C J. Recent progress in the Development of Diesel Surrogate Fuels[J]. Progress in Energy and Combustion Science, 2011, 37(3): 330-350.
[3] Shen H S, Steinberg J, Vanderover J, et al. A Shock Tube Study of the Ignition of n-Heptane, n-Decane, n-Dodecane, and n-Tetradecane at Elevated Pressures[J]. Energy & Fuels, 2009. 23(5): 2482-2489.
[4] Li B, Liu N, Zhao R, et al. Flame Propagation of Mixtures of Air with High Molecular Weight Neat Hydrocarbons and Practical Jet and Diesel Fuels[J]. Proceedings of the Combustion Institute, 2013, 34(1): 727-733.
[5] Mzé-Ahmed A, Dagaut P, Dayma G, et al. Experimental Study of the Oxidation of n-Tetradecane in a Jet-Stirred Reactor (JSR) and Detailed Chemical Kinetic Modeling[J]. Combustion Science and Technology, 2014, 186(4-5): 594-606.
[6] Westbrook C K, Pitz W J, Herbinet O, et al. A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkane Hydrocarbons From n-Octane to n-Hexadecane[J]. Combustion and Flame, 2009, 156(1): 181-199.
[7] Vajda S, Valko P, Turányi T. Principal Component Analysis of Kinetic Models[J]. International Journal of Chemical Kinetics, 1985, 17(1): 55-81.
[8] Turányi T. Sensitivity Analysis of Complex Kinetic Systems, Tools and Applications[J]. Journal of Mathematical Chemistry, 1990, 5(3): 203-248.
[9] Lu T, Law C K. A Directed Relation Graph Method for Mechanism Reduction[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1333-1341.
[10] Pepiot-Desjardins P, Pitsch H. An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms[J]. Combustion and Flame, 2008, 154(1-2): 67-81.
[11] Sun W, Chen Z, Gou X, et al. A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms[J]. Combustion and Flame, 2010, 157(7): 1298-1307.
[12] 文斐, 钟北京. 基于特征值分析的骨架机理获取方法[J]. 物理化学学报, 2012. 28(6): 1306-1312.
[13] Goussis D A, Lam S H. A Study of Homogeneous Methanol Oxidation Kinetics Using CSP[J]. Symposium (International) on Combustion, 1992, 24(1): 113-120.
[14] Montgomery C J, Cannon S M, Mawid M A, et al. Reduced Chemical Kinetic Mechanisms for JP-8 Combustion[R]. AIAA 2002-0336.
[15] Maas U, Pope S B. Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space[J]. Combustion and Flame, 1992, 88(3-4): 239-264.
[16] You X, Egolfopoulos F N, Wang H. Detailed and Simplified Kinetic Models of n-Dodecane Oxidation: The Role of Fuel Cracking in Aliphatic Hydrocarbon Combustion[J]. Proceedings of the Combustion Institute, 2009, 32(1): 403-410.
[17] Yao T, Pei Y, Zhong B J, et al. A Hybrid Mechanism for n-Dodecane Combustion with Optimized Low-Temperature Chemistry[C]. Cincinnati: 9th U.S.National Combustion Meeting, 2015.
[18] Bikas G, Peters N. Kinetic Modelling of n-Decane Combustion and Autoignition: Modeling Combustion of n-Decanem[J]. Combustion and Flame, 2001, 126(1-2): 1456-1475.
[19] 文斐, 姚通, 钟北京. 奇异摄动法简化化学反应机理 [J]. 工程热物理学报, 2012, 33(4): 39-44.
[20] 刘建文, 熊生伟, 马雪松, 基于DRG和QSSA方法的煤油详细燃烧机理简化[J]. 推进技术, 2011, 32(4): 525-529. (LIU Jian-wen, XIONG Sheng-wei, MA Xue-song. Reduction of Kerosene Detailed Combustion Reaction Mechanism Based on DRG and QSSA[J]. Journal of Propulsion Technology, 2011, 32(4): 525-529.)
[21] Vasu S S, Davidson, D F, Hong Z, et al. N-Dodecane Oxidation at High-Pressures: Measurements of Ignition Delay Times and OH Concentration Time-Histories[J]. Proceedings of the Combustion Institute, 2009, 32(1): 173-180. * 收稿日期:2015-06-04;修订日期:2015-08-12。基金项目:国家自然科学基金(91441113)。作者简介:刘建文,男,硕士,高级工程师,研究领域为燃烧流场模拟。E-mail: liujw512@163.com(编辑:梅瑛)
|